CSE 312 Foundations of Computing II

Lecture 1: Introduction & Counting

https://cs.washington.edu/312

Instructor

Rachel Lin [she/her]

rachel@cs Specialty: **Cryptography (uses a LOT of probability)** <u>https://homes.cs.washington.edu/~rachel</u> Office: CSE 652

A Team of fantastic TAs

Hisham Bhatti

Ariel Fu

Charles Henry Immendorf

Maggie Jiang

Zhi Yang Lim

Di Mao

Vlad Murad

Francis Matthew Peng

Emily My-Hien Robinson

Claris Winston

Andew Mingwei Zhang

Jolie Zhou

See https://courses.cs.washington.edu/courses/cse312/23au/staff.html to learn more about their backgrounds and interests!

Lectures and Sections

- Lectures MWF (SAV 260)
 - 1:30-2:20pm
 - Classes will be in person
 - Lectures are recorded
 - Panopto automatic recording and available on Canvas
 - Annotated slides also uploaded.

• Sections Thu (starts this week)

- Not recorded
- Will prepare you for problem sets!

Interaction in Class

Poll Everywhere

- We will sometimes use Poll Everywhere during class
- You sign up directly

Go to https://www.pollevery where.com/login and login using YOURNETID@uw.edu We use pollev.com/rachel312

Online Chat in Class

- Ask questions related to the lecture, e.g., what does XX notation mean? Can some one remind me what is the product rule?
- Chime in to answer questions from your fellow classmates.
- Express your insights, thoughts, ideas. Say hello.
- We have one TA coming into each lecture to answer questions.

Today: Ed chat Channel: in-lecture-discussion-0927

Questions and Discussions

- Office hours throughout the week (starting this <u>Thursday</u>)
 - See

https://courses.cs.washington.edu/courses/cse312/23au/staff.html

- Ed Discussion
 - You should have received an invitation (synchronized with the class roaster)
 - Material (resources tab)
 - Announcements (discussion tab)
 - Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructor for personal issues.

Engagement

- "Concept checks" after each lecture 5-8 %
 - Must be done (on Gradescope) before the next lecture by 1:00 pm.
 - <u>Simple</u> questions to reinforce concepts taught in each class
 - Keep you engaged throughout the week, so that homework becomes less of a hurdle

• 9 Problem Sets (Gradescope) 45-50 %

- Solved individually. Discussion with others allowed but separate solutions
- Homework released every week, except Week 6 (midterm), and Week 11. See homework schedule <u>https://courses.cs.washington.edu/courses/cse312/22au/index.html</u>
- Generally due Wednesdays, but Fridays after Thanksgiving
- First problem set posted later today

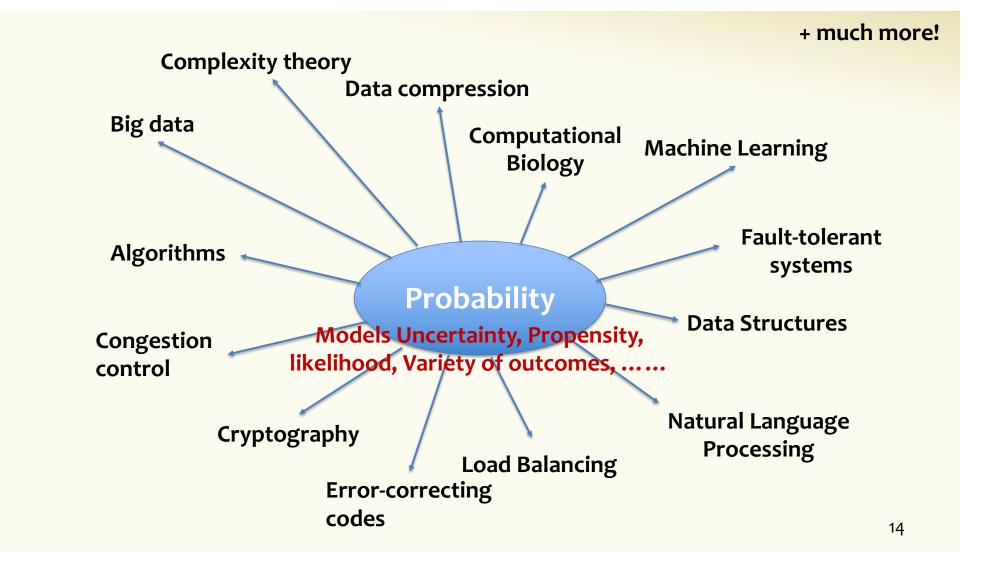
• Midterm 15-20 %

- In class on Wednesday, Nov 2 (Week 6)
- Final Exam 30-35 %
 - Monday, December 12 at 2:30-4:20 pm in this room (as in UW Autumn Quarter Exam Schedule)

For more details see

Course Webpage <u>https://cs.washington.edu/312</u>

e.g., late policies on concept checks and homeworks


Foundations of Computing II

Introduction to Counting, Probability & Statistics

for computer scientists

<u>What</u> is probability?? <u>Why</u> probability?!

Content

- Counting (basis of discrete probability)
 - Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
 - Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
 - Various inequalities, Zoo of discrete random variables, Concentration, Tail bounds
- Continuous Probability
 - Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
 - A sample of randomized algorithms, differential privacy, learning ...

Today: A fast introduction to counting so you will have enough to work on in section tomorrow...

We are interested in counting the number of objects with a certain given property.

"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

> "How many positive integer solutions (x, y, z)does the equation $x^3 + y^3 = z^3$ have?"

Generally: Question boils down to computing <u>cardinality</u> |S| of some given set S.

(Discrete) Probability and Counting are Twin Brothers

"What is the probability that a random student from CSE312 has black hair?"

students with black hair

#students

shutterstock.com • 579768892

Today – Two basic rules

- Sum rule
- Product rule
- Permutation and Combination

Sum Rule

If you can choose from

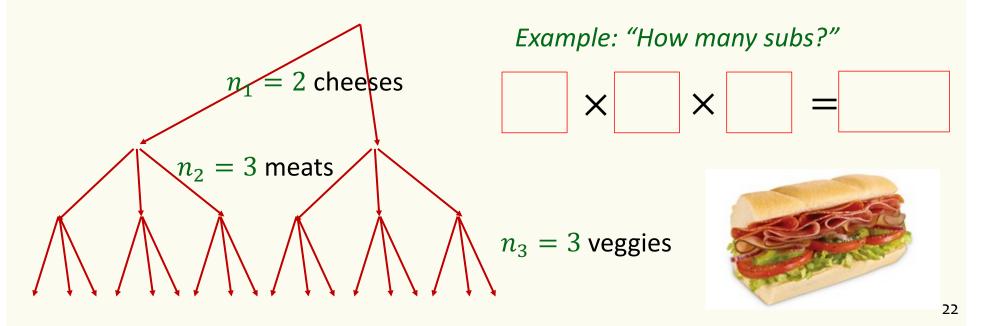
- EITHER one of *n* options,
- OR one of *m* options with NO overlap with the previous *n*

then the number of possible outcomes of the experiment is

n + m

Counting "lunches"

If a lunch order consists of **either** one of 6 soups **or** one of 9 salads, how many different lunch orders are possible?

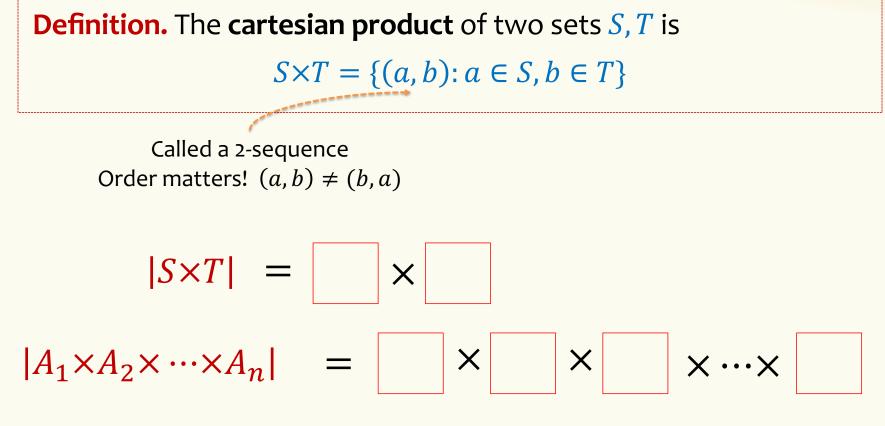


Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

Product rule examples – Strings


How many strings of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

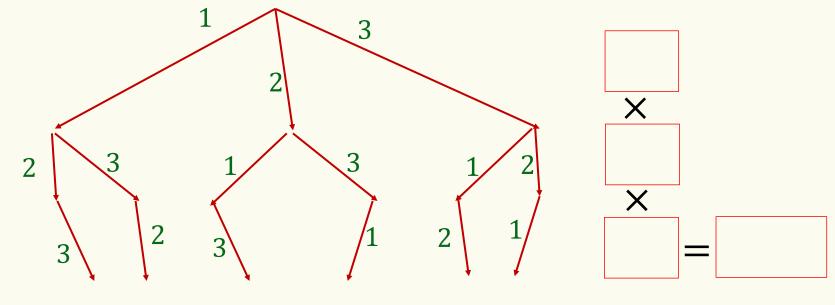
How many binary strings of length n over the alphabet $\{0,1\}$?

• E.g.,
$$0 \cdots 0, 1 \cdots 1, 0 \cdots 01, \dots$$

 $\times \times \times \times \times =$

Product rule example – Cartesian Product

Product rule example – Power set


Definition. The **power set** of *S* is the set of all subsets of *S*, $\{X: X \subseteq S\}$. Notations: $\mathcal{P}(S)$ or simply 2^{S} (which we will use).

How many different subsets of *S* are there if |S| = n?

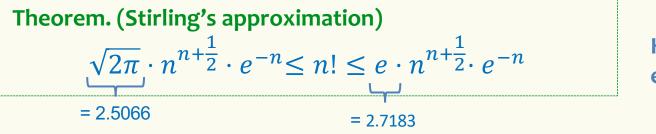
Product rule example – Power set

set
$$S = \{e_1, e_2, e_3, \cdots, e_n\}$$

subset $X = \{$ }
 $\times \times \times \times = =$

Note: Sequential process for product rule works even if the sets of options are different at each point "How many sequences in {1,2,3}³ with no repeating elements?"

Factorial

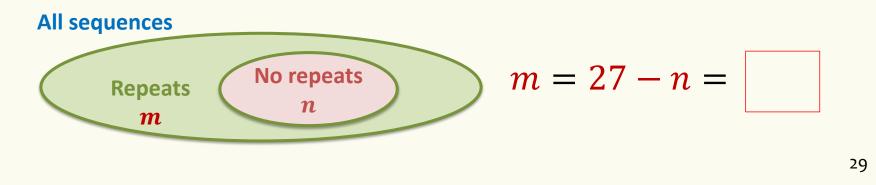

"How many ways to order elements in S, where |S| = n?"

Permutations

Answer =
$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

Definition. The **factorial function** is

 $n! = n \times (n-1) \times \dots \times 2 \times 1$


Huge: Grows exponentially in *n*

Nice use of sum rule: Counting using complements

"How many sequences in $\{1,2,3\}^3$ have repeating elements?" m

"# of sequences in $\{1,2,3\}^3$ with no repeating elements" n =

"# of sequences in
$$\{1,2,3\}^3$$
 $3^3 = 27$ $= m + n$ by the sum rule

Distinct Letters

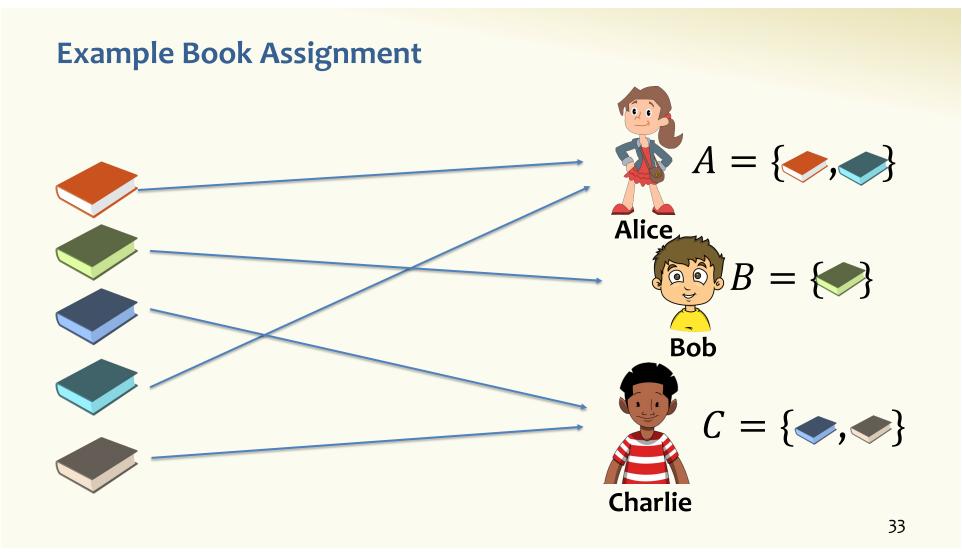
"How many sequences of 5 **distinct** alphabet letters from {*A*, *B*, ..., *Z*}?" E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22 = 7893600$

In general Aka: k-permutations Fact. # of k-element sequences of distinct symbols from an n-element set is n!

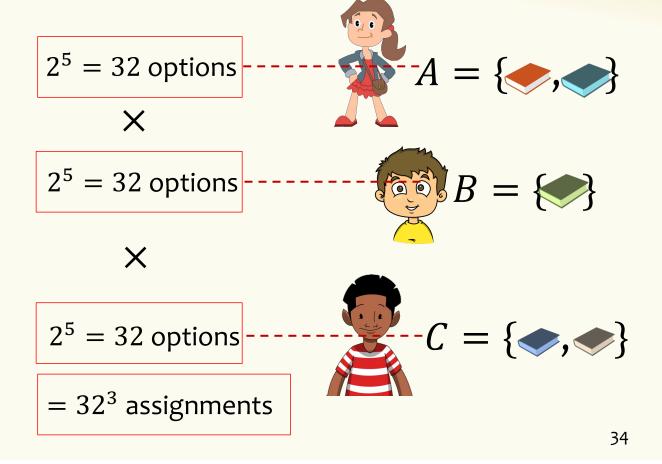
$$P(n,k) = n \times (n-1) \times \dots \times (n-k+1) = \frac{n!}{(n-k)!}$$

Product rule – One more example


5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

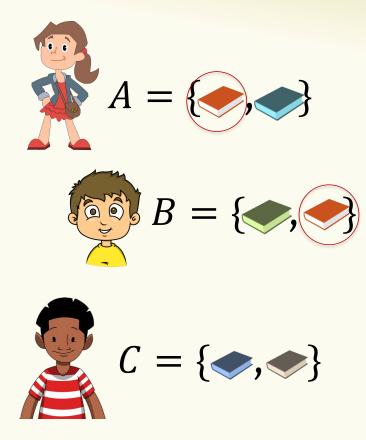
Every book to one person, everyone gets ≥ 0 books.

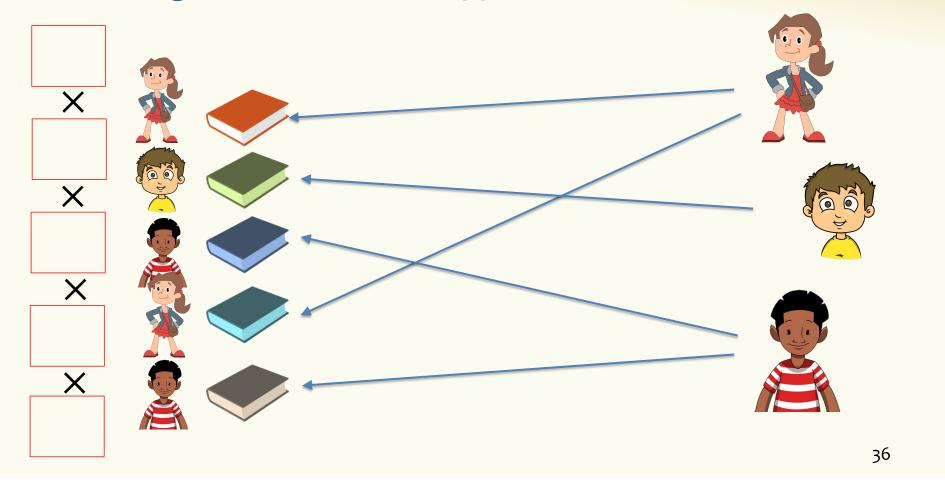

Book assignment – Modeling

Correct?

Poll:

- A. Correct
- B. Overcount
- C. Undercount
- D. No idea


pollev.com/rachel312


Problem – Overcounting

Problem: We are counting some invalid assignments!!!
→ overcounting!

What went wrong in the sequential process?After assigning *A* to Alice,*B* is no longer a valid option for Bob



Book assignments – A Clever Approach

Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself Think about counter examples to your own solution.

This Photo by Unknown Author is licensed under CC BY-NC

• Permutations

and Combinations

Number of Subsets

"How many size-5 subsets of {A, B, ..., Z}?"
E.g., {A,Z,U,R,E}, {B,I,N,G,O}, {T,A,N,G,O}. But not:
{S,T,E,V}, {S,A,R,H},...

Difference from *k*-permutations: NO ORDER Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ... Same set: {T,A,N,G,O}, {O,G,N,A,T}, {A,T,N,G,O}, {N,A,T,G,O}, {O,N,A,T,G}... ...

Number of Subsets – Idea

Consider a sequential process:

- 1. Choose a subset $S \subseteq \{A, B, \dots, Z\}$ of size |S| = 5e.g. $S = \{A, G, N, O, T\}$
- 2. Choose a permutation of letters in *S* e.g., *TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...*

Outcome: A sequence of 5 distinct letters from $\{A, B, \dots, Z\}$

$$??? = \frac{26!}{21!\,5!} = 65780$$

k-combination

Fact. The number of subsets of size k of a set of size n is $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

a.k.a. Binomial coefficient (verbalized as "*n* choose *k*")

Notation: $\binom{S}{k}$ = set of all *k*-element subsets of *S*. $\left|\binom{S}{k}\right| = \binom{|S|}{k}$ [also called **combinations**]

Quick Summary

• *k*-sequences: How many length *k* sequences over alphabet of size *n*?

– Product rule $\rightarrow n^k$

k-permutations: How many length *k* sequences over alphabet of size *n*, without repetition?

- Permutation
$$\rightarrow \frac{n!}{(n-k)!}$$

k-combinations: How many size k subsets of a set of size n (without repetition and without order)?

- Combination
$$\rightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

42

The first concept check is out and due at 1:00pm before Friday's lecture

The concept checks are meant to help you immediately reinforce what is learned.

Students from previous quarters have found them really useful!