CSE 312
 Foundations of Computing II

Lecture 1: Introduction \& Counting
https://cs.washington.edu/312

Instructor

Rachel Lin [she/her]

rachel@cs
Specialty: Cryptography (uses a LOT of probability)
https://homes.cs.washington.edu/~rachel
Office: CSE 652

A Team of fantastic TAs

See https://courses.cs.washington.edu/courses/cse312/23au/staff.html to learn more about their backgrounds and interests!

Lectures and Sections

- Lectures MWF (SAV 260)
- 1:30-2:20pm
- Classes will be in person
- Lectures are recorded
- Panopto automatic recording and available on Canvas
- Annotated slides also uploaded.
- Sections Thu (starts this week)
- Not recorded
- Will prepare you for problem sets!

Interaction in Class

- Poll Everywhere
- We will sometimes use Poll Everywhere during class
- You sign up directly

Go to https://www.pollevery where.com/login and
login using
YOURNETID@uw.edu
We use
pollev.com/rachel312

- Online Chat in Class
- Ask questions related to the lecture, e.g., what does XX notation mean? Can some one remind me what is the product rule?
- Chime in to answer questions from your fellow classmates.
- Express your insights, thoughts, ideas. Say hello.
- We have one TA coming into each lecture to answer questions.

Today: Ed chat Channel: in-lecture-discussion-0927

Questions and Discussions

- Office hours throughout the week (starting this Thursday)
- See
https://courses.cs.washington.edu/courses/cse312/23au/staff.html
- Ed Discussion
- You should have received an invitation (synchronized with the class roaster)
- Material (resources tab)
- Announcements (discussion tab)
- Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructor for personal issues.

Engagement

- "Concept checks" after each lecture 5-8 \%
- Must be done (on Gradescope) before the next lecture by 1:00 pm.
- Simple questions to reinforce concepts taught in each class
- Keep you engaged throughout the week, so that homework becomes less of a hurdle
- 9 Problem Sets (Gradescope) 45-50 \%
- Solved individually. Discussion with others allowed but separate solutions
- Homework released every week, except Week 6 (midterm), and Week 11. See homework schedule https://courses.cs.washington.edu/courses/cse312/22au/index.html
- Generally due Wednesdays, but Fridays after Thanksgiving
- First problem set posted later today
- Midterm 15-20 \%
- In class on Wednesday, Nov 2 (Week 6)
- Final Exam 30-35 \%
- Monday, December 12 at 2:30-4:20 pm in this room (as in UW Autumn Quarter Exam Schedule)

For more details see

Course Webpage https://cs.washington.edu/312
e.g., late policies on concept checks and homeworks

Foundations of Computing II

Introduction to Counting, Probability \& Statistics
for computer scientists

What is probability??
Why probability?!

Content

- Counting (basis of discrete probability)
- Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
- Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
- Various inequalities, Zoo of discrete random variables, Concentration, Tail bounds
- Continuous Probability
- Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
- A sample of randomized algorithms, differential privacy, learning ...

Today: A fast introduction to counting so you will have enough to work on in section tomorrow...

We are interested in counting the number of objects with a certain given property.
"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

$$
\begin{aligned}
& \text { "How many positive integer solutions }(x, y, z) \\
& \text { does the equation } x^{3}+y^{3}=z^{3} \text { have?" }
\end{aligned}
$$

Generally: Question boils down to computing cardinality $|S|$ of some given set S.
(Discrete) Probability and Counting are Twin Brothers
"What is the probability that a random student from CSE312 has black hair?"
$=\frac{\# \text { students with black hair }}{\# \text { students }}$

Today - Two basic rules

- Sum rule
- Product rule
- Permutation and Combination

Sum Rule

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n then the number of possible outcomes of the experiment is

$$
n+m
$$

Counting "lunches"

If a lunch order consists of either one of 6 soups or one of 9 salads, how many different lunch orders are possible?

Product Rule: In a sequential process, there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), ..., and
- n_{m} choices for the $m^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{m}$

Product rule examples - Strings

How many strings of length 5 over the alphabet $\{A, B, C, \ldots, Z\}$ are there?

- E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

How many binary strings of length n over the alphabet $\{0,1\}$?

- E.g., $0 \cdots 0,1 \cdots 1,0 \cdots 01, \ldots$

Product rule example - Cartesian Product

Definition. The cartesian product of two sets S, T is

$$
S \times T=\{(a, b): a \in S, b \in T\}
$$

Called a 2 -sequence
Order matters! $(a, b) \neq(b, a)$

$$
|S \times T|=\square \times \square
$$

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\square \times \square \times \square \times \cdots \times \square
$$

Product rule example - Power set

Definition. The power set of S is the set of all subsets of S, $\{X: X \subseteq S\}$.
Notations: $\mathcal{P}(S)$ or simply 2^{S} (which we will use).
Example. $\quad 2\{\star, \Delta\}=\{\varnothing,\{\star\},\{\Delta\},\{\star, \star\}\}$

$$
2^{\varnothing}=\{\varnothing\}
$$

How many different subsets of S are there if $|S|=n$?

Product rule example - Power set

$$
\operatorname{set} S=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n}\right\}
$$

$$
\text { subset } X=\{\quad\}
$$

$$
\text { Proposition. }\left|2^{S}\right|=2^{|S|}
$$

Note: Sequential process for product rule works even if the sets of options are different at each point
"How many sequences in $\{1,2,3\}^{3}$ with no repeating elements?"

Factorial

"How many ways to order elements in S, where $|S|=n$?"
Permutations

$$
\text { Answer }=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

Definition. The factorial function is

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

Note: $0!=1$

Huge: Grows exponentially in n

Nice use of sum rule: Counting using complements

"How many sequences in $\{1,2,3\}^{3}$ have repeating elements?" m "\# of sequences in $\{1,2,3\}^{3}$ with no repeating elements" $n=\square$ " $\#$ of sequences in $\{1,2,3\}^{3} 3^{3}=27=m+n$ by the sum rule All sequences

Distinct Letters

"How many sequences of 5 distinct alphabet letters from
$\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22=7893600$

In general

Aka: k-permutations

Fact. \# of k-element sequences of distinct symbols from an n-element set is

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!}
$$

Product rule - One more example

 5 books
"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person,
everyone gets ≥ 0 books.
Every book to one person,
everyone gets ≥ 0 books.

Example Book Assignment

Book assignment - Modeling

Correct?
Poll:
A. Correct
B. Overcount
C. Undercount
D. No idea
pollev.com/rachel312

Problem - Overcounting

Problem: We are counting some invalid assignments!!!
\rightarrow overcounting!

What went wrong in the sequential process?
After assigning A to Alice,
B is no longer a valid option for Bob

$$
C=\{\infty, \infty\}
$$

Book assignments - A Clever Approach

Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself Think about counter examples to your own solution.

- Permutations

and Combinations

(1)000006

Number of Subsets

"How many size-5 subsets of $\{A, B, \ldots, Z\}$?"
E.g., $\{A, Z, U, R, E\},\{B ; T, T, G, O\},\{T, A, N, G, O\}$. But not: $\{S, T, E, V\},\{S, A,-R, \mathcal{H}\}, \ldots$

Difference from k-permutations: NO ORDER
Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ...
Same set: \{T,A,N,G,O\}, \{O,G,N,A,T\},\{A,T,N,G,O\},\{N,A,T,G,O\},\{O,N,A,T,G\}... ...

Number of Subsets - Idea

Consider a sequential process:

1. Choose a subset $S \subseteq\{A, B, \ldots, Z\}$ of size $|S|=5$ e.g. $S=\{A, G, N, O, T\}$
2. Choose a permutation of letters in S e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...

Outcome: A sequence of 5 distinct letters from $\{A, B, \ldots, Z\}$

$$
? ? ?=\frac{26!}{21!5!}=65780
$$

k-combination

Fact. The number of subsets of size k of a set of size n is
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$
a.k.a. Binomial coefficient (verbalized as " n choose k ")

Notation: $\binom{S}{k}=$ set of all k-element subsets of $S . \quad\left|\binom{S}{k}\right|=\binom{|S|}{k}$ [also called combinations]

Quick Summary

- k-sequences: How many length k sequences over alphabet of size n ?
- Product rule $\boldsymbol{\rightarrow} n^{k}$
- k-permutations: How many length k sequences over alphabet of size n, without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- k-combinations: How many size k subsets of a set of size n (without repetition and without order)?
- Combination $\boldsymbol{\rightarrow}\binom{n}{k}=\frac{n!}{k!(n-k)!}$

The first concept check is out and due at 1:00pm before Friday's lecture

The concept checks are meant to help you immediately reinforce what is learned.

Students from previous quarters have found them really useful!

