CSE 312
 Foundations of Computing II

Lecture 2: Combinations and Binomial Coefficients

Announcements

Homework:

- Pset1 was posted on Wednesday and is due 11:59pm next Wednesday.
- Read the first page for how to write up your homework solutions. Don't wait until you are working on the questions to figure it out!
- We will have python programming tasks later (4~5 of them)

Resources

- Textbook readings can provide another perspective
- Theorems \& Definitions sheet - https://www.alextsun.com/files/defs thms.pdf
- Office Hours
- EdStem discussion

Quick counting summary from last class

- Sum rule:

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product rule:

In a sequential process, if there are
$-n_{1}$ choices for the $1^{\text {st }}$ step,
$-n_{2}$ choices for the $2^{\text {nd }}$ step (given the first choice),.. , and
$-n_{k}$ choices for the $k^{\text {th }}$ step (given the previous choices), then the total number of outcomes is $n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{k}$

- Representation of the problem is important (creative part)

Quick Summary

- k-sequences: How many length k sequences over alphabet of siz n? - Product rule $\rightarrow n^{k}$
- k-permutations: How many length k sequences over alphabet of size n, without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$

$$
n \times n-1 \times n-2 \ldots(n-k+1)
$$

- k-combinations: How many size k subsets of a set of size n (without repetition and without order)?
- Combination $\rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Number of Subsets

"How many size-5 subsets of $\{A, B, \ldots, Z\}$?"
E.g., $\{A, Z, U, R, E\},\{B, T, N, G, O\},\{T, A, N, G, O\}$. But not: $\{S, T, E, V\},\left\{S, A, R^{\prime}, H\right\}, \ldots$

Difference from k-permutations: NO ORDER
Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ...
Same set: \{T,A,N,G,O\}, \{O,G,N,A,T\},\{A,T,N,G,O\},\{N,A,T,G,O\},\{O,N,A,T,G\}.........

Number of Subsets - Idea

Consider a sequential process:

1. Choose a subset $S \subseteq\{A, B, \ldots, Z\}$ of size $|S|=5$ e.g. $S=\{A, G, N, O, T\}$
2. Choose a permutation of letters in S e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...

Outcome: A sequence of 5 distinct letters from $\{A, B, \ldots, Z\}$

$$
? ? ?=\frac{26!}{21!5!}=65780
$$

$21!$

k-combination

a.k.a. Binomial coefficient (verbalized as " n choose k ")

Notation: $\begin{gathered}\binom{\mathbb{S}}{k} \\ 2^{S}\end{gathered}=\begin{gathered}\text { set of all } k \text {-element subsets of } S . \\ \text { [also called combinations] }\end{gathered} \frac{\left|\binom{S}{k}\right|=\binom{|S|}{k}}{\left|2^{S}\right|=2_{11}^{|S|}}$

Symmetry in Binomial Coefficients

Fact. $\underline{\binom{n}{k}=\binom{n}{n-k}}$
This is called an Algebraic proof, i.e., Prove by checking algebra

Why??

Symmetry in Binomial Coefficients - A different proof
Fact. $\binom{n}{k}=\binom{n}{n-k}$
Two equivălent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

$$
\binom{4}{1}=4=\binom{4}{3}
$$

Example - Counting Paths

"How many shortest paths from Gates to

 Starbucks?"
Example - Counting Paths

How do we represent a shortest path?

Example - Counting Paths

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"
Example: $k=3, n=5$
$(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots$
Poll: \# of solutions?
A. 6^{3}
B. $\binom{7}{2}=\frac{7!}{2!5!}$
C. $\binom{7}{3}=\frac{7!}{4!3!}$

Hint: we can represent each solution as a binary string.
D. No idea
https://pollev.com/rachel312

Example - Sum of integers
Example: $k=3, n=5$

$$
(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Clever representation of solutions
$(3,1,1)$
$(2,1,2)$
$(1,0,4)$
\downarrow
\downarrow

11101011101011
1001111

Example - Sum of integers
Example: $k=3, n=5$
\# sols $=$ \# strings from $\{0,1\}^{7}$ w/ exactly two $0 \mathrm{~s}=\binom{7}{2}=21$
Clever representation of solutions
$(3,1,1)$
$(2,1,2)$
\downarrow
\downarrow
$(1,0,4)$
1110101
1101011
1001111

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"
\# sols = \# strings from $\{0,1\}$

$$
=\binom{n+k-1}{k-1}
$$

After a change in representation, the problem magically reduces to counting combinations.

Example - Sum of integers

Example: $k=3, n=5$
\# sols $=$ \# strings from $\{0,1\}^{7}$ w/ exactly two 0 s $=\binom{7}{2}=21$
Clever representation of solutions

A mixed example - Word Permutations (aka Anagrams)

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, ...
Guess: 7! Correct?!
No! e.g., swapping two T's also leads to SEATTLE swapping two E's also leads to SEATTLE

Counted as separate permutations, but they lead to the same word.

A mixed example - Word Permutations (aka Anagrams)

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, ...

> | Location of S | | | Location of A |
| :---: | :---: | :---: | :---: |
| $\binom{7}{2} \times\binom{ 5}{2} \times 3 \times 2 \times 1$ | | | |
| T | | | |
| Location of L | | | |

Locations of T's Locations of E's

Another way to look at SEATTLE

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...

$$
\begin{aligned}
\binom{7}{2} \times\binom{ 5}{2} \times 3 \times 2 \times 1 & =\frac{7!}{2!8!} \times \frac{8!}{2!8!} \times 8! \\
& \left.=\frac{7!}{2!2!}\right)=1260
\end{aligned}
$$

Arrange the 7 letters as if they were distinct. Then divide by 2 ! to account for 2 duplicate T 's, and divide by 2 ! again for 2 duplicate E's.

More generally...

How many ways can you arrange the letters in "Godoggy"?

$$
\begin{aligned}
& n=7 \text { Letters, } k=4 \text { Types }\{\mathrm{G}, \mathrm{O}, \mathrm{D}, \mathrm{Y}\} \\
& n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=1
\end{aligned}
$$

$$
\frac{7!}{3!2!1!1!}=\binom{7}{3,2,1,1}
$$

Multinomial coefficients

Multinomial Coefficients

If we have k types of objects (\boldsymbol{n} total), with $\boldsymbol{n}_{\boldsymbol{1}}$ of the first type, \boldsymbol{n}_{2} of the second, \ldots, and $\boldsymbol{n}_{\boldsymbol{k}}$ of the $k^{\text {th }}$, then the number of orderings possible is

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Binomial Coefficients - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k}$
Symmetry in Binomial Coefficients

Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial Theorem

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
Pascal's Identity

Binomial Theorem: Idea

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x x+x y+y x+y y \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

Poll: What is the coefficient for $x y^{3}$?
A. 4
B. $\binom{4}{1}$
C. $\binom{4}{3}$
D. 3
https://pollev.com/rachel312

$$
\begin{aligned}
(x+y)^{4} & =(x+y)(x+y)(x+y)(x+y) \\
& =x x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

Binomial Theorem: Idea

$$
\underline{x}^{(x+y)^{n}}=\underline{(x+y) \ldots(x+y)}=\sum_{k=0}^{n} \underbrace{n} \cdots x^{k} y^{n-k}
$$

Each term is of the form $x^{k} y^{n-k}$ since each term is made by multiplying exactly n variables, either x or y, one from each copy of $(x+y)$

How many times do we get $x^{k} y^{n-k}$?
The number of ways to choose x from exactly k of the n copies of
$(x+y)$ (the other $n-k$ choices will be y) which is:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

Apply with $x=y=1$
Many properties of sums of binomial coefficients can be found by plugging in different values of x and y in the Binomial Theorem.

$$
\begin{aligned}
& \text { Corollary. } \\
& \qquad \sum_{k=0}^{n}\binom{n}{k}=2^{n}
\end{aligned}
$$

Pascal's Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later ... } \\
& =\frac{n!}{k!n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad \text {.nar }
\end{aligned}
$$

Let's see a combinatorial argument

Example - Pascal's Identity

Fact. $\begin{aligned}\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\ |S| & =|B|+|A|\end{aligned}$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example - Pascal's Identity
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have these sizes

$$
|S|=\binom{n}{k}
$$

e.g. $n=4, k=2, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : set of size k subsets of $[n-1]$ (i.e., DON'T include n)

$$
A=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

B : set of size $k-1$ subsets of $[n-1]$ that (i.e., DO include n)

$$
B=\{\{1,4\},\{2,4\},\{3,4\}\}
$$

Example - Pascal's Identity

Fact. $\begin{aligned}\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\ |S| & =|B|+|A|\end{aligned}$
S : set of size k subsets of $[n]=\{1,2, \cdots, n\}$.
A : set of size k subsets of [$n-1$] (i.e., DON'T inc
n is in set, need to choose other $k-1$ elements from $[n-1]$

$$
|A|=\binom{n-1}{k-1}
$$

