CSE 312
 Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die :

$$
E=\{2,4,6\}
$$

Review Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space is a pair (Ω, P) where:

- Ω is a set called the sample space.
- P is the probability measure,
a function $P: \Omega \rightarrow \mathbb{R}$ such that:
- $P(x) \geq 0$ for all $x \in \Omega$
$-\sum_{x \in \Omega} P_{A}(x)=1$
Some outcome must show up. Normalized to sum up to 1 .

Set of possible elementary outcomes

$$
A \subseteq \Omega: P(A)=\sum_{x \in A} P(x)
$$

Specify Likelihood (or probability) of each elementary outcome

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that someone likes ice cream given they like donuts?

$$
\frac{7}{7+13}=\frac{7}{20}
$$

Conditional Probability

Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

An equivalent and useful formula is

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Conditional Probability Examples

Suppose that you flip a fair coin twice.
What is the probability that both flips are heads given that you have at least one head?

Let O be the event that at least one flip is heads
Let B be the event that both flips are heads

$$
P(O)=3 / 4 \quad P(B)=1 / 4 \quad P(B \cap O)=1 / 4
$$

Ω	
$H H$	$H T$
$T H$	$T T$

$$
P(B \mid O)=\frac{P(B \cap O)}{P(O)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

Conditional Probability Examples

Suppose that you flip a fair coin twice.
What is the probability that at least one flip is heads given that at least one flip is tails?

Let H be the event that at least one flip is heads
Let T be the event that at least one flip is tails

Ω	
$H H$	$H T$
$T H$	$T T$

Conditional Probability Examples

Suppose that you flip a fair coin twice.
What is the probability that at least one flip is heads given that at least one flip is tails?

Let H be the event that at least one flip is heads
Let T be the event that at least one flip is tails

$$
\begin{array}{r}
P(H)=3 / 4 \quad P(T)=3 / 4 \quad P(H \cap T)=1 / 2 \\
P(H \mid T)=\frac{P(H \cap T)}{P(T)}=\frac{1 / 2}{3 / 4}=\frac{2}{3}
\end{array}
$$

Ω	
$H H$	$H T$
$T H$	$T T$

Example with Conditional Probability

Suppose we toss a red die and a blue die:
both 6 sided and all outcomes equally likely.
What is $P(B)$? What is $P(B \mid A)$?
$P(B) \quad P(B \mid A)$
a) $1 / 6 \quad 1 / 6$
b) $1 / 6 \quad 1 / 3$
c) $1 / 6 \quad 3 / 36$
d) $1 / 9 \quad 1 / 3$

Agenda

- Conditional Probability
- Bayes Theorem -
- Law of Total Probability
- More Examples

Reversing Conditional Probability

Question: Does $P(A \mid B)=P(B \mid A)$?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

$$
\begin{aligned}
& P(A \mid B)=1 \\
& P(B \mid A) \neq 1
\end{aligned}
$$

Bayes Theorem

A formula to let us "reverse" the conditional.
Theorem. (Bayes Rule) For events A and B , where $P(A), P(B)>0$,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$P(A)$ is called the prior (our belief without knowing anything)
$P(A \mid B)$ is called the posterior (our belief after learning B)

Bayes Theorem Proof

Claim:

$$
P(A), P(B)>0 \quad \Rightarrow \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes Theorem Proof

Claim:
$P(A), P(B)>0 \quad \Rightarrow \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$

By definition of conditional probability

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Swapping A, B gives

$$
P(B \cap A)=P(B \mid A) P(A)
$$

But $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Dividing both sides by $P(B)$ gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

1. They "cover" the whole space
2. They don't overlap

Partition

Definition. Non-empty events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω if (Exhaustive)

$$
E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\Omega
$$

(Pairwise Mutually Exclusive)

$$
\forall_{i} \forall_{i \neq j} \quad E_{i} \cap E_{j}=\emptyset
$$

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, what can we say about $P(F)$?

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that shows

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two blue balls, two green balls
- Right pocket: One blue ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

Sequential Process

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{C}\right)$
- 0.5% of the US population has Zika. $\quad P(Z)$

What is the probability you have Zika (event Z) if you test positive (event T).?

$$
P(Z \mid T)
$$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{c}\right)$
- 0.5% of the US population has Zika. $\quad P(Z)$

What is the probability you have Zika (event Z) if you test positive (event T)?

$$
\text { By Bayes Rule, } P(Z \mid T)=\frac{P(T \mid Z) P(Z)}{P(T)}
$$

By the Law of Total Probability, $P(T)=P(T \mid Z) P(Z)+P\left(T \mid Z^{c}\right) P\left(Z^{c}\right)$

$$
=\frac{98}{100} \cdot \frac{5}{1000}+\frac{1}{100} \cdot \frac{995}{1000}=\frac{490}{100000}+\frac{995}{100000}
$$

What is the probability that you do not have Zika (event Z^{c})?

$$
P\left(Z^{c}\right)=1-P(Z)=99.5 \%
$$

$$
\text { So, } P(Z \mid T) \approx 33 \%
$$

Philosophy - Updating Beliefs

Your beliefs changed drastically
Z = you have Zika
T = you test positive for Zika

Prior: $P(Z)$

Posterior: $P(Z \mid T)$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{c}\right)$
- 0.5% of the US population has Zika. $\quad P(Z)$

What is the probability you have Zika (event Z) if you test negative (event T^{c})?

$$
\text { By Bayes Rule, } P\left(Z \mid T^{c}\right)=\frac{P\left(T^{c} \mid Z\right) P(Z)}{P\left(T^{c}\right)}
$$

By the Law of Total Probability, $P\left(T^{c}\right)=P\left(T^{c} \mid Z\right) P(Z)+P\left(T^{c} \mid Z^{c}\right) P\left(Z^{c}\right)$

$$
=\frac{2}{100} \cdot \frac{5}{1000}+\left(1-\frac{1}{100}\right) \cdot \frac{995}{1000}=\frac{10}{100000}+\frac{98505}{100000}
$$

What is the probability you test negative (event T^{c}) if you have Zika (event Z)?

$$
P\left(T^{c} \mid Z\right)=1-P(T \mid Z)=2 \% \quad \text { So, } P\left(Z \mid T^{c}\right)=\frac{10}{10+98505} \approx 0.01 \%
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particu We just used this implicity on the negative Zika
probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-P(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A})>0$
$\longrightarrow(\mathcal{A}, P(\cdot \mid \mathcal{A}))$ is a probability space

