CSE 312 Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips:
 E = {HH, HT, TH}
- Rolling an even number on a die : $E = \{2, 4, 6\}$

Review Probability space

Definition. A (discrete) **probability space** is a pair (Ω, P) where:

- Ω is a set called the **sample space**.
- *P* is the **probability measure**,

a function $P: \Omega \to \mathbb{R}$ such that:

$$-P(x) \ge 0$$
 for all $x \in \Omega$

 $-\sum_{x\in\Omega}P(x)=1$

Some outcome must show

up. Normalized to sum up

to 1.

The likelihood (or probability) of each outcome is non-negative. Set of possible elementary outcomes

$$A \subseteq \Omega$$
: $P(A) = \sum_{x \in A} P(x)$

Specify Likelihood (or probability) of each **elementary outcome**

Agenda

- Bayes Theorem
- Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that someone likes ice cream **given** they like donuts?

$$\frac{7}{7+13} = \frac{7}{20}$$

Conditional Probability

Definition. The **conditional probability** of event A **given** an event B happened (assuming $P(B) \neq 0$) is $P(A|B) = \frac{P(A \cap B)}{P(B)}$

An equivalent and useful formula is

 $P(A \cap B) = P(A|B)P(B)$

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that both flips are heads given that you have at least one head?

Let *O* be the event that at least *one* flip is heads Let *B* be the event that *both* flips are heads

P(O) = 3/4 P(B) = 1/4 $P(B \cap O) = 1/4$

$$P(B|O) = \frac{P(B \cap O)}{P(O)} = \frac{1/4}{3/4} = \frac{1}{3}$$

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that at least one flip is heads given that at least one flip is tails?

Let *H* be the event that at least one flip is *heads* Let *T* be the event that at least one flip is *tails*

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that at least one flip is heads given that at least one flip is tails?

Let *H* be the event that at least one flip is *heads* Let *T* be the event that at least one flip is *tails*

P(H) = 3/4 P(T) = 3/4 $P(H \cap T) = 1/2$

$$P(H|T) = \frac{P(H \cap T)}{P(T)} = \frac{1/2}{3/4} = \frac{2}{3}$$

Example with Conditional Probability

Suppose we toss a red die and a blue die: both 6 sided and all outcomes equally likely.

What is P(B)? What is P(B|A)?

pollev.com/rachel312

	P(B)	P(B A)
a)	1/6	1/6
b)	1/6	1/3
c)	1/6	3/36
d)	1/9	1/3

Agenda

- Conditional Probability
- Bayes Theorem 🗲
- Law of Total Probability
- More Examples

Reversing Conditional Probability

Question: Does P(A|B) = P(B|A)?

No!

- Let *A* be the event you are wet
- Let *B* be the event you are swimming

P(A|B) = 1 $P(B|A) \neq 1$

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B, where P(A), P(B) > 0,

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

P(A) is called the **prior** (our belief without knowing anything) P(A|B) is called the **posterior** (our belief after learning B)

Bayes Theorem Proof

Bayes Theorem Proof

By definition of conditional probability $P(A \cap B) = P(A|B)P(B)$

Swapping *A*, *B* gives

 $P(B \cap A) = P(B|A)P(A)$

But $P(A \cap B) = P(B \cap A)$, so P(A|B)P(B) = P(B|A)P(A)

Dividing both sides by P(B) gives

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability <-
- More Examples

Partitions (Idea)

These events partition the sample space

- 1. They "cover" the whole space
- 2. They don't overlap

Partition

Definition. Non-empty events $E_1, E_2, ..., E_n$ **partition** the sample space Ω if **(Exhaustive)**

$$E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^n E_i = \Omega$$

(Pairwise Mutually Exclusive)

$$\forall_i \forall_{i \neq j} \ E_i \cap E_j = \emptyset$$

Law of Total Probability (Idea)

If we know $E_1, E_2, ..., E_n$ partition Ω , what can we say about P(F)?

Law of Total Probability (LTP)

Definition. If events $E_1, E_2, ..., E_n$ partition the sample space Ω , then for any event F $P(F) = P(F \cap E_1) + ... + P(F \cap E_n) = \sum_{i=1}^n P(F \cap E_i)$

Using the definition of conditional probability $P(F \cap E) = P(F|E)P(E)$ We can get the alternate form of this that shows

$$P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two blue balls, two green balls
- **Right pocket:** One blue ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

 $P(\mathbf{B}) = P(\mathbf{B} \cap \mathbf{Left}) + P(\mathbf{B} \cap \mathbf{Right}) \quad \text{(Law of total probability)}$ $= P(\mathbf{Left}) \times P(\mathbf{B} | \mathbf{Left}) + P(\mathbf{Right}) \times P(\mathbf{B} | \mathbf{Right})$ $= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$

23

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples 🗨

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

What is the probability you have Zika (event Z) if you test positive (event T).?

P(Z|T)

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

What is the probability you have Zika (event Z) if you test positive (event T)?

By Bayes Rule,
$$P(Z|T) = \frac{P(T|Z)P(Z)}{P(T)}$$

By the Law of Total Probability, $P(T) = P(T|Z)P(Z) + P(T|Z^{c})P(Z^{c})$ $= \frac{98}{100} \cdot \frac{5}{1000} + \frac{1}{100} \cdot \frac{995}{1000} = \frac{490}{100000} + \frac{995}{100000}$

What is the probability that you do not have Zika (event Z^{c})?

$$P(Z^c) = 1 - P(Z) = 99.5\%$$
 So, $P(Z|T) \approx 33\%$

Philosophy – Updating Beliefs

Your beliefs changed **drastically**

- Z = you have Zika
- T = you test positive for Zika

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

What is the probability you have Zika (event Z) if you test negative (event T^c)?

By Bayes Rule,
$$P(Z|T^c) = \frac{P(T^c|Z)P(Z)}{P(T^c)}$$

By the Law of Total Probability, $P(T^{c}) = P(T^{c}|Z)P(Z) + P(T^{c}|Z^{c})P(Z^{c})$ = $\frac{2}{3} \cdot \frac{5}{5} + (1 - \frac{1}{3}) \cdot \frac{995}{5} = \frac{10}{10} + \frac{1}{3} \cdot \frac{9}{5} + \frac{10}{5} \cdot \frac{9}{5} + \frac{10}{5} + \frac{10$

 $= \frac{2}{100} \cdot \frac{5}{1000} + \left(1 - \frac{1}{100}\right) \cdot \frac{995}{1000} = \frac{10}{100000} + \frac{98505}{100000}$

What is the probability you test negative (event T^c) if you have Zika (event Z)? $P(T^c|Z) = 1 - P(T|Z) = 2\%$ So, $P(Z|T^c) = \frac{10}{10 + 98505} \approx 0.01\%$ 30 **Bayes Theorem with Law of Total Probability**

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if *E* is an event with non-zero probability, then

 $P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^{C})P(E^{C})}$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P(\mathcal{B}^{c}|\mathcal{A}) = 1 - P(\mathcal{B}|\mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A}) > 0$

