
CSE 312

Foundations of Computing II
Lecture 6: Bayesian Inference, Chain Rule,         
Independence
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Review Conditional & Total Probabilities 

• Conditional Probability
 
• Bayes Theorem

• Law of Total Probability
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐹 ='
!"#

$

𝑃 𝐹 ∩ 𝐸! ='
!"#

$

𝑃 𝐹 𝐸! 𝑃(𝐸!)

if 𝑃 𝐴 ≠ 0, 𝑃 𝐵 ≠ 0

𝐸#, … , 𝐸$	partition Ω



𝐸!	 𝐸"	 𝐸#	 𝐸$

Conditional Probability 
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𝐹

𝐺

e.g. 𝑃 𝐸% = 0.3

𝑃 𝐸& = 0.25

e.g. 𝑃 𝐸%|𝐺 = 0.5

𝑃 𝐸%|𝐺 = 0

e.g. 𝑃 𝐸%|𝐹 = 0.4

𝑃 𝐸&|𝐹 = 0.3



Conditional Probability Defines a Probability Space
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Formally. (Ω, 𝑃) is a probability space and 𝑃 𝒜 > 0  

(𝒜, 𝑃(⋅ |𝒜)) is a probability space

The probability conditioned on 𝒜 follows the same properties as 
(unconditional) probability.  

Example. 𝑃 ℬ% 𝒜 = 1	 − 𝑃(ℬ|𝒜)



Example – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) if you test positive (event 𝑇)?

5

𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍')

𝑃(𝑍)

𝑃(𝑍') = 	1 − 𝑃(𝑍) = 99.5%

By Bayes Rule, 𝑃 𝑍 𝑇 = 𝑃 𝑇 𝑍 𝑃(𝑍)
𝑃(𝑇)

By the Law of Total Probability, 𝑃 𝑇 = 𝑃 𝑇 𝑍 𝑃 𝑍 + 𝑃 𝑇 𝑍' 𝑃(𝑍')

=
98
100

⋅
5

1000
+

1
100

⋅
995
1000

=
490

100000
+

995
100000

So, 𝑃 𝑍 𝑇 ≈ 33	%

What is the probability that you do not have Zika (event 𝑍')?



Philosophy – Updating Beliefs

Your beliefs changed drastically

𝑍 = you have Zika
𝑇 = you test positive for Zika
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Prior: 𝑃(𝑍)

I have a 0.5% chance 
of having Zika

Posterior: 𝑃(𝑍|𝑇)

I now have a 33% 
chance of having Zika 

after the test!!!
Receive positive 

test result



What happened ? 

The test seems excellent! 

• Effectiveness 𝑃 𝑇 𝑍 = 0.98
(False negative 𝑃 𝑇' 𝑍 = 0.02)
• False positive 𝑃 𝑇 𝑍' = 0.01

But conditioned on positive test 

Chance of actually having Zika is 
only 𝑃 𝑍 𝑇 = 0.33

𝑃 𝑍 𝑇 =
𝑃 𝑇 𝑍 𝑃 𝑍

𝑃 𝑇 =
𝑃 𝑇 ∩ 𝑍
𝑃 𝑇

Observe the ratio ( )|+
((+|))

= ( )
( +

 can be very large in general



Example – Zika Testing
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Suppose we had 100,000 people:
• 500 have Zika
• 490 have Zika and test positive
• 995 do not have Zika and test positive

Demo

98% of those 
with Zika

1% of those 
without Zika

500 have Zika (0.5%)
99,500 do not

𝑍	(500)𝑇	(? )

𝑍' 	(99500)

𝑇 ∩ 𝑍!	(995) 𝑇 ∩ 𝑍	(490)

𝑃 𝑇 = 𝑃 𝑇 𝑍 𝑃 𝑍 + 𝑃 𝑇 𝑍! 𝑃(𝑍!)

𝑃 𝑍 𝑇 =
𝑃 𝑇 ∩ 𝑍
𝑃 𝑇

Ω=US population (100,000)

=
490

490 + 995
≈ 0.33

ZikaTest positive

False positive True positive

https://web.stanford.edu/class/cs109/demos/medicalBayes.html


Take Home Exercise – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) if you test negative (event 𝑇')?
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𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍')

𝑃(𝑍)

𝑃 𝑍 𝑇% ? ? ?



Take Home Exercise, Solution – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) if you test negative (event 𝑇')?
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𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍')

𝑃(𝑍)

𝑃 𝑇' 𝑍 = 	1 − 𝑃 𝑇 𝑍 = 2%

By Bayes Rule, 𝑃 𝑍 𝑇' = 𝑃 𝑇' 𝑍 𝑃(𝑍)
𝑃(𝑇')

By the Law of Total Probability, 𝑃 𝑇' = 𝑃 𝑇' 𝑍 𝑃 𝑍 + 𝑃 𝑇' 𝑍' 𝑃(𝑍')

=
2
100

⋅
5

1000
+ 1 −

1
100

⋅
995
1000

=
10

100000
+

98505
100000

So, 𝑃 𝑍 𝑇' = #.
#./012.2

≈ 0.01	%
What is the probability you test negative (event 𝑇') if you have Zika (event 𝑍)?



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸! 𝐹) =
𝑃 𝐹 𝐸! 𝑃(𝐸!)

𝑃(𝐹) =
𝑃 𝐹 𝐸! 𝑃 𝐸!

∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
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We just used this implicity on the Zika
test example with  𝐸 = 𝑍 and 𝐹 = 𝑇



Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

What is the probability this email is spam, given the subject contains “FREE”? 
Some useful stats:

– 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
– 70% of spam emails contain the word “FREE” in the subject.
– 80% of emails you receive are spam.
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Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Chain Rule
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐴 ∩ 𝐵



Often probability space Ω,ℙ  is given implicitly via sequential 
process

Recall from last time:
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𝑃 B = 𝑃 Left ×𝑃 B|Left + 𝑃 Right ×𝑃 B|Right

r B

l G

1/2

1/2

1/2

1/3

2/3
Right

Left
1/2

r G
l B

What if we have more than two (e.g., 𝑛)  steps?



Chain Rule
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐴 ∩ 𝐵

Theorem. (Chain Rule) For events 𝐴C, 𝐴D, … , 𝐴E , 

𝑃 𝐴C ∩⋯∩ 𝐴E = 𝑃 𝐴C ⋅ 𝑃 𝐴D 𝐴C ⋅ 𝑃(𝐴F|𝐴C ∩ 𝐴D)

⋯𝑃(𝐴E|𝐴C ∩ 𝐴D ∩⋯∩ 𝐴EGC)

An easy way to remember: We have 𝑛 tasks and we can do them 
sequentially, conditioning on the outcome of previous tasks



Chain Rule Example 

Shuffle a standard 52-card deck and draw the top 3 cards. 
(uniform probability space)

What is 𝑃 	 = 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)?

𝐴: Ace of Spades First
𝐵: 10 of Clubs Second
𝐶: 4 of Diamonds Third

𝑃(𝐴) ⋅ 𝑃 𝐵 𝐴 	 ⋅ 𝑃 𝐶 𝐴 ∩ 𝐵

1
52
	 ⋅
1
51
	 ⋅
1
50



Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Independence
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Equivalent formulations:
• If 𝑃 𝐴 ≠ 0, equivalent to 𝑃 𝐵 𝐴 = 𝑃 𝐵
• If 𝑃 𝐵 ≠ 0, equivalent to 𝑃 𝐴 𝐵 = 𝑃 𝐴

Definition. Two events 𝐴	and 𝐵	are (statistically) independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

“The probability that 𝐵 occurs after observing 𝐴” – Posterior
= “The probability that 𝐵 occurs” – Prior  



Independence - Example
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Assume we toss two fair coins 

“first coin is heads”

“second coin is heads”

𝐴 = {HH,HT}
𝐵 = {HH, TH} 𝑃 𝐵 = 2×

1
4 =

1
2

𝑃 𝐴 = 2×
1
4 =

1
2

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐻𝐻 =
1
4
= 𝑃 𝐴 ⋅ 𝑃 𝐵



Example – Independence
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Toss a coin 3 times. Each of 8 outcomes equally likely. 
• 𝐴 = {at	most	one	𝑇} 	= 	 {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻}
• 𝐵 = {at	most	2	𝐻Is} = 𝐻𝐻𝐻 𝑐

Independent?

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵)?

3
8
≠
1
2
	 ⋅
7
8

Poll:
A. Yes, independent
B. No 
pollev/rachel312



Multiple Events – Mutual Independence
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Definition. Events 𝐴!, … , 𝐴" are mutually independent if for every 
non-empty subset 𝐼 ⊆ {1, … , 𝑛}, we have

𝑃 C
#∈%

𝐴# =D
#∈%

𝑃(𝐴#) .



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

Each link works with the probability given, independently

𝐴 𝐵
𝐶 𝐷

i.e., mutually independent 
events 𝐴, 𝐵, 𝐶, 𝐷 with

𝑃 𝐴 = 𝑝
𝑃 𝐵 = 𝑞
𝑃 𝐶 = 𝑟
𝑃 𝐷 = 𝑠



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

If each link works with the probability given, independently:         
What’s the probability that nodes 1 and 4 can communicate? 

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵 = 	𝑝𝑞
𝑃 𝐶 ∩ 𝐷 = 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑟𝑠 𝐴 𝐵

𝐶 𝐷

= 𝑃 𝐴 ∩ 𝐵) + 𝑃	(𝐶 ∩ 𝐷 − 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷)
𝑃 	 = 𝑃 𝐴 ∩ 𝐵 ∪ (𝐶 ∩ 𝐷)1-4 connected

𝑃 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷
= 𝑃 𝐴 ⋅ 𝑃 𝐵 ⋅ 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑝𝑞𝑟𝑠

𝑃 	 = 𝑝𝑞 + 𝑟𝑠 − 𝑝𝑞𝑟𝑠1-4 connected



Independence as an assumption

• People often assume it without justification

• Example:  A skydiver has two chutes

𝐴: event that the main chute doesn’t open         𝑃 𝐴 = 0.02
𝐵: event that the back-up doesn’t open               𝑃 𝐵 = 0.1

• What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!          
 Both chutes could fail because of the same rare event e.g., freezing rain.
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Independence – Another Look
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Definition. Two events 𝐴	and 𝐵	are (statistically) independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

“Equivalently.” If  𝑃 𝐵 ≠ 0, 𝑃 𝐴|𝐵 = 𝑃 𝐴 .

It is important to understand that independence is a property of probabilities of 
outcomes, not of the root cause generating these events. 

Events generated independently è their probabilities satisfy independence
ç

Not necessarily 

This can be counterintuitive!



Sequential Process
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R
3/5

1/10

3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability 3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12
𝑃 R =

3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

Independent! 𝑃 R = 𝑃 R	|	3R3B

𝑃 3R3B ×𝑃 R	|	3R3B

Urn
Ball drawn
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Agenda

• Bayes Theorem + Law of Total Probability
• Chain Rule
• Independence
• Infinite process and Von Neumann’s trick
• Conditional independence
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Plain Independence. Two events 𝐴	and 𝐵	are independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

Conditional Independence
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• If 𝑃 𝐴 ≠ 0, equivalent to 𝑃 𝐵 𝐴 = 𝑃 𝐵
• If 𝑃 𝐵 ≠ 0, equivalent to 𝑃 𝐴 𝐵 = 𝑃 𝐴

• If 𝑃 𝐴 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐵 𝐴 ∩ 𝐶 = 𝑃 𝐵	|	𝐶
• If 𝑃 𝐵 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐴 𝐵 ∩ 𝐶 = 𝑃 𝐴	|	𝐶

Definition. Two events 𝐴	and 𝐵	are independent conditioned on 𝐶 if 
    𝑃 𝐶 ≠ 0	and 𝑃 𝐴 ∩ 𝐵	|	𝐶 = 𝑃 𝐴	|	𝐶 ⋅ 𝑃 𝐵	 𝐶).



Example – Throwing Dice 

Suppose that Coin 1 has probability of heads 0.3
                   and Coin 2 has probability of head 0.9. 
We choose one coin randomly with equal probability and flip that coin 3 
times independently.   What is the probability we get all heads?

  
𝑃(𝐻𝐻𝐻) 	= 𝑃 𝐻𝐻𝐻	 𝐶!) ⋅ 𝑃(𝐶!) 	+ 𝑃(𝐻𝐻𝐻 	𝐶+ ⋅ 𝑃(𝐶+)

				= 𝑃 𝐻 𝐶! ,	𝑃(𝐶!) 	+ 𝑃(𝐻 	𝐶+ ,	𝑃(𝐶+)

				= 0.3, ⋅ 0.5	 + 0.9, ⋅ 0.5 = 0.378

Law of Total Probability
(LTP)

Conditional Independence

𝐶!  = coin 𝑖 was selected



Example – Throwing Dies 
Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

If it shows 1, 2 →	Alice wins.
If it shows 3 →	Bob wins.
Otherwise, play another round

    

What is Pr(Alice wins on 4st round) ?  



Often probability space Ω,ℙ  is given implicitly of the 
following form, using chain rule and/or independence

Experiment proceeds in n sequential steps, each step follows 
some local rules defined by conditional probability and 
independence.

– Allows for easy definition of experiments where Ω = ∞ as in the 
previous game 
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