
CSE 312

Foundations of Computing II
Lecture 8: Linearity of Expectation
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Review Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, 𝑃) is a function 𝑋:Ω → ℝ.

The set of values that 𝑋 can take on is its range/support:	 𝑋(Ω) or Ω!
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Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$
𝑋 = 𝑥% = 𝜔 ∈ Ω	 𝑋 𝜔 = 𝑥%}

Random variables partition 
the sample space.

Σ&∈((*)𝑃 𝑋 = 𝑥 = 1



Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
• Properties of Expectation
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Probability Mass Function (PMF)
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Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$

Random variables 
partition the 
sample space.

*
,∈-"

𝑃 𝑋 = 𝑥 = 1

Definition. For a RV 𝑋:Ω → ℝ, the function 𝑝.: 𝑋(Ω) → ℝ 
defined by  𝑝.(𝑥) = 𝑃 𝑋 = 𝑥  is called the probability mass 
function (PMF) of 𝑋

𝑝.(𝑥)



Example – Two Fair Dice
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2 3 4 5 6 7 8 9 10 11 12

1/36

2/36

3/36

4/36

5/36

6/36

𝑋 = sum of two dice throws

𝑝.



Example – Number of Heads
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We flip 𝑛 coins, independently, each heads with probability 𝑝

𝑋 = # of heads

𝑝! 𝑘 = 𝑃 𝑋 = 𝑘 =
𝑛
𝑘

⋅ 𝑝# ⋅ 1 − 𝑝 $%#

Ω = {HH⋯HH, HH⋯HT, HH⋯TH,… , TT⋯TT} 

# of sequences with 𝑘 heads Prob of sequence w/ 𝑘 heads 



Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
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Events concerning RVs

We already defined 𝑃 𝑋 = 𝑥 = 𝑃 𝑋 = 𝑥  where                     
  𝑋 = 𝑥 = 𝜔 ∈ Ω	 𝑋 𝜔 = 𝑥}

Sometimes we want to understand other events involving RV 𝑋
– e.g. 𝑋 ≤ 𝑥 = 𝜔 ∈ Ω	 𝑋 𝜔 ≤ 𝑥} which makes sense for any 𝑥 ∈ ℝ
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Cumulative Distribution Function (CDF)

Definition. For a RV 𝑋: Ω → ℝ, the cumulative distribution function of 
𝑋 is the function 𝐹!: ℝ → 0,1  that specifies for any real number 𝑥, the 
probability that 𝑋 ≤ 𝑥.   

That is, 𝐹!  is defined by   𝐹! 𝑥 = 𝑃(𝑋 ≤ 𝑥)
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Example – Two fair coin flips
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-1 0 1 2 3 -1 0 1 2 3

1/4

1/2

3/4

1

𝑋 = number of heads

𝑝. 𝐹.

Probability Mass Function
PMF

Cumulative Distribution Function
CDF
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Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
• Properties of Expectation
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Expectation (Idea)

• What is the number of heads do 
we expect to see in two fair coin 
flips? 
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-1 0 1 2 3

1/4

1/2

3/4

1
𝑝!

Example. Two fair coin flips
                  Ω = TT, HT, TH, HH

                  𝑋 = number of heads



Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = ?
&∈(

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= ?
)∈(!

𝑥 ⋅ 𝑝!(𝑥)𝔼 𝑋 = ?
)∈*(()

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Expected Value
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Definition. The expected value of a (discrete) RV 𝑋	is

                 𝔼 𝑋 = ∑) 𝑥 ⋅ 𝑝!(𝑥) = ∑) 𝑥 ⋅ 𝑃(𝑋 = 𝑥)	

Example. Value 𝑋	of rolling one fair die

𝑝! 1 = 𝑝! 2 = ⋯ = 𝑝! 6 =
1
6

𝔼 𝑋 = 1 ⋅
1
6
+ 2 ⋅

1
6
+ 3 ⋅

1
6
+ 4 ⋅

1
6
+ 5 ⋅

1
6
+ 6 ⋅

1
6
=
21
6
= 3.5

For the equally-likely outcomes case, this is just the average of the possible outcomes!



Expectation
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-1 0 1 2 3

1/4

1/2

3/4

1
𝑝!

Example. Two fair coin flips
                  Ω = TT, HT, TH, HH

                  𝑋 = number of heads

𝔼 𝑋 = 0 ⋅ 𝑝( 0 + 1 ⋅ 𝑝( 1 + 2 ⋅ 𝑝((2)

0

= 0 ⋅
1
4
+ 1 ⋅

1
2
+ 2 ⋅

1
4
=
1
2
+
1
2
= 1

What is 𝔼[𝑋]?



Roulette (USA)
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Ω:
     Numbers 1-36
• 18 Red
• 18 Black

      Green 0 and 00

RV RED:   If Red number turns up +1,  if Black number, 0, or 00 turns up −1 

RVs for gains from some bets:

RV 1st12:   If number 1-12 turns up +2,  if number 13-36, 0, or 00 turns up −1 

𝔼 𝖱𝖤𝖣 = +1 ⋅
18
38

+ −1 ⋅
20
38

= −
2
38

≈ −5.26%

Note 0 and 00 are not EVEN

𝔼 	 = +2 ⋅
12
38

+ −1 ⋅
26
38

= −
2
38

≈ −5.26%1st12



Roulette (USA)
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Ω:
     Numbers 1-36
• 18 Red
• 18 Black

      Green 0 and 00

RV BASKET:   If 0, 00, 1, 2, or 3 turns up +6 otherwise −1 

An even worse bet:

𝔼 BASKET = +6 ⋅
5
38

+ −1 ⋅
33
38

= −
3
38

≈ −7.89%

Note 0 and 00 are not EVEN



Frequenst Interpretation
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“If 𝑋 is how much you win playing the game in one round. How much 
would you expect to win, on average, per game, when repeatedly 
playing?”
Answer: 𝔼[𝑋]
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Example – Flipping a biased coin until you see heads

• Biased coin:
 𝑃 𝐻 = 𝑞 > 0     
 𝑃(𝑇) = 1 − 𝑞

• 𝑍 = # of coin flips until first head
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𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

1 − 𝑞 -𝑞

1 − 𝑞 .𝑞

1 − 𝑞 𝑞
𝑞

𝔼 𝑍 =?
/01

2

𝑖 ⋅ 𝑃 𝑍 = 𝑖 = ?
/01

2

𝑖 ⋅ 𝑞 1 − 𝑞 /%1	 Converges, so 𝔼 𝑍  is finite

Can calculate this directly but…

𝑃(𝑍 = 𝑖) = 𝑞 1 − 𝑞 /%1



Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
• Properties of Expectation
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Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌 
(𝑋, 𝑌 do not need to be independent)

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   

Or, more generally: For any random variables 𝑋1, … , 𝑋$,

𝔼[𝑋1 +⋯+ 𝑋$] = 𝔼[𝑋1] + ⋯+ 𝔼[𝑋$].   

Because: 𝔼[𝑋1 +⋯+ 𝑋$] = 𝔼[(𝑋1+⋯+ 𝑋$%1) + 𝑋$]
= 𝔼[𝑋1 +⋯+ 𝑋$%1] + 𝔼[𝑋$] = ⋯



Linearity of Expectation – Proof 
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𝔼[𝑋 + 𝑌] = ∑& 𝑃(𝜔)(𝑋 𝜔 + 𝑌(𝜔)) 

= 𝔼[𝑋] + 𝔼[𝑌]

= ∑& 𝑃 𝜔 𝑋 𝜔 + ∑& 𝑃 𝜔 𝑌 𝜔

Theorem. For any two random variables 𝑋 and 𝑌 
(𝑋, 𝑌 do not need to be independent)

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   



Example – Coin Tosses

We flip 𝑛 coins, each one heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼(𝑍)?   

25
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𝔼 𝑍 = 6
!"#

$

𝑘 ⋅ 𝑃(𝑍 = 𝑘)

Can we solve it more 
elegantly, please? 

This Photo by Unknown Author is 
licensed under CC BY-NC

Example – Coin Tosses – The brute force method 
We flip 𝑛 coins, each one heads with probability 𝑝,	
𝑍 is the number of heads, what is 𝔼[𝑍]?   

= 6
!"#

$

𝑘 ⋅
𝑛!

𝑘! 𝑛 − 𝑘 !	𝑝
! 1 − 𝑝 $%! = 6

!"&

$
𝑛!

(𝑘 − 1)! 𝑛 − 𝑘 !	𝑝
! 1 − 𝑝 $%!

= 𝑛𝑝6
!"&

$
(𝑛 − 1)!

(𝑘 − 1)! 𝑛 − 𝑘 !	𝑝
!%& 1 − 𝑝 $%!

= 𝑛𝑝6
!"#

$%&
(𝑛 − 1)!

𝑘! 𝑛 − 1 − 𝑘 !
	𝑝! 1 − 𝑝 ($%&)%!

= 𝑛𝑝6
!"#

$%&
𝑛 − 1
𝑘 	𝑝! 1 − 𝑝 ($%&)%! = 𝑛𝑝 𝑝 + 1 − 𝑝

$%&
= 𝑛𝑝 ⋅ 1 = 𝑛𝑝

= 6
!"#

$

𝑘 ⋅
𝑛
𝑘
𝑝! 1 − 𝑝 $%!

http://www.pngall.com/baby-png
https://creativecommons.org/licenses/by-nc/3.0/


Computing complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

         𝑋 = 	𝑋1 +⋯+ 𝑋$
● LOE: Apply linearity of expectation.
        𝔼[𝑋] = 𝔼[𝑋1] + ⋯+ 𝔼[𝑋$].   
● Conquer: Compute the expectation of each 𝑋/

Often, 𝑋Q are indicator (0/1) random variables.



Indicator random variables

For any event 𝐴, can define the indicator random variable 𝑋A for 𝐴 

𝑋A = O1	 if	event	𝐴	occurs	
0	 if	event	𝐴	does	not	occur

𝑃 𝑋, = 1 = 𝑃 𝐴 	
𝑃 𝑋, = 0 = 1 − 𝑃 𝐴

𝐴
Ω

1
0

0.05

0.3
0.2

0

0.05

0.1

0.3

0.55

0.45

ℝ



Example – Coin Tosses

We flip 𝑛 coins, each one heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼[𝑍]?   

-  𝑋/ = O1, 𝑖
th	coin	\lip	is	heads

0, 𝑖th	coin	\lip	is	tails.	

29

𝑃 𝑋% = 1 = 𝑝 
𝑃 𝑋% = 0 = 1 − 𝑝 

Fact. 𝑍 = 𝑋1 +⋯+ 𝑋$ 

𝔼[𝑋Q] = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 0 = 𝑝

Linearity of Expectation:
𝔼[𝑍] = 𝔼[𝑋T +⋯+𝑋U] = 𝔼[𝑋T] +⋯+ 𝔼[𝑋U] = 𝑛 ⋅ 𝑝 



Example: Returning Homeworks 

• Class with 𝑛 students, randomly hand back homeworks. 
 All permutations equally likely.
• Let 𝑋 be the number of students who get their own HW
What is 𝔼[𝑋]? Use linearity of expectation!
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3

1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0

1/6 3, 1, 2 0
1/6 3, 2, 1 1

𝑋/ = 1  iff  𝑖𝑡ℎ student gets own HW back

LOE:   𝔼[𝑋] = 𝔼[𝑋1] + ⋯+ 𝔼[𝑋$]

Conquer: What is 𝔼[𝑋/]?          A. 1
$

  B. 1
$%1

 C. 1
-

                            Poll: pollev.com/rachel312

Decompose: What is 𝑋/?



Pairs with the same  birthday

● In a class of 𝑚 students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays)?

Decompose:  Indicator events involve pairs of students (𝑖, 𝑗)	for 𝑖 ≠ 𝑗  
              𝑋/B = 1	 iff  students 𝑖 and 𝑗 have the same birthday

LOE:   
𝑚
2  indicator variables 𝑋/B

Conquer:     𝔼 𝑋/B = 1
.CD

  so total expectation is   
E
-
.CD

= E(E%1)
F.G

 pairs



Linearity of Expectation – Even stronger
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Theorem. For any random variables 𝑋1, … , 𝑋$, and real numbers 
𝑎1, … , 𝑎$ ∈ ℝ,

𝔼[𝑎1𝑋1 +⋯+ 𝑎$𝑋$] = 𝑎1𝔼[𝑋1] + ⋯+ 𝑎$𝔼[𝑋$].   

Very important: In general, we do not have 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]  



Linearity is special!

In general 𝔼 𝑔(𝑋) ≠ 𝑔 𝔼 𝑋
 

E.g., 𝑋 = O	+1	with	prob	1/2−1	with	prob	1/2

Then:	𝔼[𝑋-] ≠ 𝔼[𝑋]-

How DO we compute 𝔼[𝑔 𝑋 ]? 



Expected Value of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑔(𝑋) is   

𝔼 𝑔(𝑋) = ?
&∈(

𝑔 𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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= ?
)∈(!

𝑔(𝑥) ⋅ 𝑝!(𝑥)𝔼 𝑔(𝑋) = ?
)∈*(()

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)


