CSE 312

## Foundations of Computing II

Lecture 9: Variance and Independence of RVs

## Recap Linearity of Expectation

Theorem. For any two random variables $X$ and $Y$ ( $X, Y$ do not need to be independent)

$$
\mathbb{E}[\underline{X+Y}]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Theorem. For any random variables $X_{1}, \ldots, X_{n}$,

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

For any event $A$, can define the indicator random variable $X$ for $A$

$$
X_{A}=\left\{\begin{array}{ll:l}
1 & \text { if event } A \text { occurs } & P\left(X_{A}=1\right)=P(A) \\
0 & \text { if event } A \text { does not occur } & \underline{P\left(X_{A}=0\right)}=\underline{1-P(A)}
\end{array}\right.
$$

$$
E\left[X_{A}\right]=1 \cdot P(A)+0(1-P(A))
$$

$$
=P(A)
$$

## Example: Returning Homeworks

- Class with $n$ students, randomly hand back homeworks.

All permutations equally likely.

- Let $X$ be the number of students who get their own HW

What is $\mathbb{E}[X]$ ? Use linearity of expectation!
Decompose: What is $X_{i}$ ?

$$
X=\sum_{i} X
$$

| $\operatorname{Pr}(\underline{\omega})$ |  | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: | :---: |
| $1 / 6$ | $1,2)$ | 3 | 3 |
| $1 / 6$ | 1, | 3, | 2 |
| $1 / 6$ | 2,1, | 1 |  |
| $1 / 6$ | 2,3, | 1 |  |
| $1 / 6$ | 3, | 1,2 | 0 |
| $1 / 6$ | 3, | 2,1 | 0 |

$X_{i}=1$ iff $i^{\text {th }}$ student gets own HW back
LOE: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]_{52}^{=} \quad 5 \cdot \frac{1}{n}=1$
Conquer: What is $\mathbb{E}\left[X_{i}\right]$ ? A. $\frac{1}{n}$ B. $\frac{1}{n-1} C \cdot \frac{1}{2}$
Poll: pollev.com/rachel312

## Pairs with the same birthday

$$
\binom{m}{2} \curvearrowright
$$

- In a class of $m$ students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

$$
x=\sum_{i, j+1} x_{i j}
$$

Decompose: Indicator events involve pairs of students $(i, j)$ for $i \neq j$ $X_{i j}=1$ iff students $i$ and $j$ have the same birthday

LOE: $\binom{m}{2}$ indicator variables $\underline{\underline{X_{i j}}}$



## Linearity of Expectation - Even stronger

Theorem. For any random variables $X_{1}, \ldots, X_{n}$, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ unless independent.

## Linearity is special!

In general $\mathbb{E}\left[\begin{array}{l}\underline{2 l}(X, Y) \\ {[g(X)]}\end{array} \neq g(\mathbb{E}(X))\right.$
E.g., $\underset{\sim}{X}=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\underbrace{E\left[X^{2}\right]}_{11})=\underbrace{E[X])^{2}}_{11}$
How DO we compute $\mathbb{E}[g(X)]$ ?

## Expected Value of $g(X)$

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

## Agenda

- Variance $\quad$
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.

$$
\begin{aligned}
& W_{2}=\text { payoff in a round of Game } 2 \\
& P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{2}\right]=0
$$

Which game would you rather play?

Somehow, Game 2 has higher volatility / exposure!

## Two Games

## $2 / 3 \quad 1 / 3$


$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$
2/3
1/3


Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

## Variance (Intuition, First Try)



## Variance (Intuition, Better Try)

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3} 2 / 3$


A better quantity (random variable): How far from the expectation?
$\Delta\left(W_{1}\right)=\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}$
$P\left(\Delta\left(W_{1}\right)=1\right)=\frac{2}{3}$
$P\left(\underline{\Delta\left(W_{1}\right)}=4\right)=\left(\frac{1}{3}\right.$

$$
\begin{aligned}
\mathbb{E}\left[\Delta\left(W_{1}\right)\right] & =\mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& =2
\end{aligned}
$$



A better quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{2}\right)=\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2}
$$

$$
\mathbb{P}\left(\Delta\left(W_{2}\right)=\underline{25}\right)=\frac{2}{3}
$$

$$
\mathbb{P}\left(\Delta\left(W_{2}\right)=100\right)=\frac{1}{3}
$$

$$
\underline{\mathbb{E}\left[\Delta\left(W_{2}\right)\right]}=\mathbb{E}\left[\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2}\right]
$$

$$
\begin{aligned}
& =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
& =50
\end{aligned}
$$

Poll:
pollev.com/paulbe ameo28
A. 0
B. $20 / 3$
C. 5040
D. 2500


We say that $W_{2}$ has "higher variance" than $W_{1}$.

## Variance

Definition. The variance of a (discrete) RV $X$ is

$$
\operatorname{Var}(X)=\underset{-}{\mathbb{E}}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(\underline{x}-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

> Recall $\mathbb{E}[X]$ is a constant, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

## Variance - Example 1

$X$ fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=?$


## Variance - Example 1

## $X$ fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\left(\frac{1}{6}\right)\left(\underline{1}-(3.5)^{2}+\left(\underline{2}-(3.5)^{2}+\left(3-(3.5)^{2}+\left(4-(3.5)^{2}+(5-3.5)^{2}+\left(\underline{6}-(3.5)^{2}\right]\right.\right.\right.\right.$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$


## Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation


## Agenda

- Variance
- Properties of Variance -
- Independent Random Variables
- Properties of Independent Random Variables


## Variance - Properties



Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x)(x-\mathbb{E}[X])^{2}
$$

$$
x_{2}=5 x_{1}
$$



Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)
Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

## Variance

## Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

## Variance - Example 1

$X$ fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
- $\mathbb{E}\left[X^{2}\right]=\frac{9}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$


## Variance of Indicator Random Variables

Suppose that $X_{A}$ is an indicator RV for event $A$ with $P(A)=p$ so

$$
\underline{\mathbb{E}\left[X_{A}\right]}=P(A)=p \quad \frac{1}{2}
$$

Since $X_{A}$ only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\begin{array}{r}
\underline{\operatorname{Var}\left(X_{A}\right)}=\frac{\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}}{p=\frac{1}{2}}=\frac{\mathbb{E}\left[X_{A}\right]}{\operatorname{var}=\frac{1}{4}=0.25}-\frac{\mathbb{E}\left[X_{A}\right]^{2}}{p=p-p^{2}}=p(1-p) \\
p=0.1 \quad \operatorname{var} \pm 0.1 .0 .9=0.09
\end{array}
$$

In General, $\operatorname{Var}(\underline{X+Y}) \neq \underline{\operatorname{Var}(X)}+\underline{\operatorname{Var}(Y)}$

## $(x+y-E(x+y))^{2}$

Proof by counter-example:

- Let $X$ De a r.v. with $\operatorname{pmf} P(X=\underline{1})=P(X=\underline{-1})=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$ ?
- Let $Y=-X$ " $=1$
- What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$ ?
$0 \quad 1$
What is $\operatorname{Var}(X+Y)$ ?

$$
\begin{gathered}
E\left[x+\frac{y}{y}\right]=E[0]=0 \\
-\ddot{x}
\end{gathered}
$$



## Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Random Variables and Independence

Definition．Two random variables $\underline{X, Y}$ are（mutually）independent if for all $\underline{x}, \underline{y}$ ，

$$
\begin{aligned}
& P(X=x) P(Y=y \mid X \\
P(X=0) Y=(⿴ 囗 十) & =P(X=x) \cdot P(Y=y)
\end{aligned}
$$

Intuition：Knowing $X$ doesn＇t help you guess $Y$ and vice versa

$$
P(Y=y)=P(Y=y \mid x=x)
$$

Definition．The random variables $X_{1}, \ldots, X_{n}$ are（mutually）independent if for all $x_{1}, \ldots, x_{n}$ ，

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note：No need to check for all subsets，but need to check for all outcomes！

## Example

Let $X$ be the number of heads in $n$ independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of $X$. Are $X$ and $Y$ independent?
A. Yes
B. No

## Example

Make $2 n$ independent coin flips of the same coin. Let $X$ be the number of heads in the first $n$ flips and $Y$ be the number of heads in the last $n$ flips.
Are $X$ and $Y$ independent?
A. Yes
B. No

## Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Important Facts about Independent Random Variables

Theorem. If $X, Y$ independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If $X, Y$ independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

## (Not covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If $X, Y$ independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Proof
Let $x_{i}, \mathrm{y}_{i}, i=1,2, \ldots$ be the possible values of $X, Y$.
$\mathbb{E}[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right)$
$=\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right)$
$=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right)$
$=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Note: NOT true in general; see earlier example $\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}$

## (Not covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If $X, Y$ independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

## Example - Coin Tosses

We flip $n$ independent coins, each one heads with probability $p$

- $X_{i}= \begin{cases}1, & i^{\text {th }} \text { outcome is heads } \\ 0, & i^{\text {th }} \text { outcome is tails. }\end{cases}$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$ ? What is $\operatorname{Var}(Z)$ ?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: $X_{1}, \ldots, X_{n}$ are mutually independent! [Verify it formally!]
$\longrightarrow \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)$

