CSE 312

Foundations of Computing II

Lecture 10: Bloom Filter

Announcements

N

- PSet 3 due today
- PSet 2 returned yesterday today
- PSet 4 will be posted today
 - <u>Last</u> PSet prior to midterm (midterm is in exactly two weeks from now)
 - Midterm info will follow soon
 - PSet 5 will only come <u>after</u> the midterm in two weeks
- Midterm feedback/evaluation to come soon (Tomorrow or Friday).

Recap Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} (p_X(x)) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any
$$a, b \in \mathbb{R}$$
, $Var(\underline{a} \cdot X + b) = \underline{a^2} \cdot Var(X)$

Theorem.
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

$$X_i \neq \begin{cases} 1, & i^{\text{th}} \text{ outcome is heads} \\ 0, & i^{\text{th}} \text{ outcome is tails.} \end{cases}$$

number of heads

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

What is
$$\mathbb{E}[Z]$$
? What is $Var(Z)$?

Note:
$$X_1, \dots, X_n$$
 are mutually independent! [Verify it formally!]

$$Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$$
Note $Var(X_i) = p(1-p)$

Note
$$Var(X_i) = p(1-p)$$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let $x_i, y_i, i = 1, 2, ...$ be the possible values of X, Y.

$$\mathbb{E}[X \cdot Y] = \sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P(X = x_{i} \land Y = y_{j})$$
independence
$$= \sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P(X = x_{i}) \cdot P(Y = y_{j})$$

$$= \sum_{i} x_{i} \cdot P(X = x_{i}) \cdot \left(\sum_{j} y_{j} \cdot P(Y = y_{j})\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Proof
$$Var(X + Y)$$

$$= \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$
equal by independence

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a <u>large</u> set U.

```
Example. U = \text{set of } 128 \text{ bit strings}
S = \text{subset of strings of interest}
```

$$|U| \approx 2^{128}$$
$$|S| \approx 1000$$

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2128 entries.

$$\underline{\mathbf{A}[x]} = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

$$S = \{0, 2, ..., K\}$$

0	1	2		K		
1	0	1	0	1	 0	0

Membership test: To check. $x \in S$ just check whether A[x] = 1.

→ constant time! 👍 😀

Storage: Require storing 2¹²⁸ bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with |*S*| entries.

$$S = \{0,2,\ldots,K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

$$A[h(x)] = (x')$$

total
$$m \times |\chi|$$

$$\chi' \in S$$

$$\chi' \in S$$
 $A[h(\chi')] = \chi'$

hash function h: $U \rightarrow [m]$

Hash Table
$$\chi_{1}y \in S$$
 $A[h(x)] = \chi$ $h(x) = h(y)$ Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

$$(|s|)$$
 $\cdot |s| = |s|(s|-1)$

Q: How many collisions in expectation if the table has size |S| and hash function assigns each x to a random position? & |S| bithdys & [36]

Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small. $C \mid S \mid X \mid X$
- However, they need at least as much space as all the data being stored, i.e., $m = \Omega(|S|)$

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Possible *false* positives

Combine with fallback mechanism – can distinguish false positives from true positives with extra cost

Bloom Filters – Ingredients

t ₁	1	0	1	0	0
t ₂	0	1	0	0	1
t ₃	1	0	0	1	0

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows $t_1, ..., t_k$, each of size m
- Think of each row as an m-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k : U \to [m]$

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m)for i = 1, ..., k: do $t_i = \text{new bit vector of } m \text{ 0s}$

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) $\mathbf{return} \ t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Bloom Filters - Initialization

Bloom filter t of length m = 5 that uses k = 3 hash functions

function INITIALIZE(k, m)

for i = 1, ..., k: **do**

 $t_i = \text{new bit vector of } m \text{ 0s}$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t_2	0	0	0	0	0
t_3	0	0	0	0	0

Bloom Filters: Add

Index into *i*-th bit-vector, at index produced by hash function and set to 1

 $\mathbf{h}_i(x) \rightarrow \text{result of hash}$ function \mathbf{h}_i on x

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for
$$i = 1, ..., k$$
: do

$$t_i[h_i(x)] = 1$$

add "thisisavirus.com" h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
_t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t_3	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t_2	0	0	0	0	0
t_3	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") \rightarrow 4

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	1	0	1	0	0
t ₂	0	$\overline{\Upsilon}$	0	0	0
t ₃	0	0	<u>b</u>	0	1

Bloom Filters: Contains

function contains(x)

return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$,

Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)
return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("thisisavirus.com") function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") $\rightarrow 2$ True True True h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$ 3 Index 0 4 Since all conditions satisfied, returns True (correctly) 0 U ۱1 t_2 0 0 000 t_3 0 0 0

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)for i = 1, ..., k: do $t_i[h_i(x)] = 1$ add("totallynotsuspicious.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for
$$i = 1, ..., k$$
: **do**

$$t_i[h_i(x)] = 1$$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallvnotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$ h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallvnotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\to 1$ h_2 ("totallynotsuspicious.com") $\to 0$ h_3 ("totallynotsuspicious.com") $\to 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") $h_1("totallynotsuspicious.com") \rightarrow 1$ $h_2("totallynotsuspicious.com") \rightarrow 0$ $h_3("totallynotsuspicious.com") \rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1_	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)
return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$ h_2 ("verynormalsite.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

True

True

contains ("verynormalsite.com")

 $(h_1(^{\circ})$ verynormalsite.com") $\rightarrow 2$ 0 \overline{h}_2 ("verynormalsite.com") $\rightarrow 0$ 0

 $\widehat{h_3}$ ("verynormalsite.com") –

Index	0	1	2	3	4
,			***		
t ₁	0	1		0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com") function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ h_1 ("verynormalsite.com") $\rightarrow 2$ True True True h_2 ("verynormalsite.com") $\rightarrow 0$ h_3 ("verynormalsite.com") $\rightarrow 4$ Index 0 3 4 Since all conditions satisfied, returns True (incorrectly) 0 ۱1 t_2 0 00 t_3 0 0 0 0

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

```
Assume we perform add(x_1), ..., add(x_n)
+ contains(x) for x \notin \{x_1, ..., x_n\}
Event E_i holds iff \mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}
```

$$P(\text{false positive}) = P(E_1 \cap E_2 \cap \dots \cap E_k) = \prod_{i=1}^k P(E_i)$$

$$\mathbf{h}_1, \dots, \mathbf{h}_k \text{ independent}$$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c \mid \mathbf{h}_i(x) = z)$$
LTP

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z)$$

$$P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z)$$

Independence of values of h_i on different inputs

$$^{\mathbf{A}} = \prod^{n} P(\mathbf{h}_{i}(x_{j}) \neq z)$$

Outputs of h_i uniformly spread

$$= \prod_{j=1}^{n} \left(1 - \frac{1}{m} \right) = \left(1 - \frac{1}{m} \right)^{n}$$

$$P(E_i^c) = \sum_{r=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

FPR =
$$\prod_{i=1}^{k} (1 - P(E_i^c)) = (1 - (1 - \frac{1}{m})^n)^k$$

False Positivity Rate – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$

FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k=30 and m=2,500,000

Hash Table

(optimistic) $5,000,000 \times 40B = 200MB$

Bloom Filter

 $2,500,000 \times 30 = 75,000,000 \text{ bits}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!