
CSE 312

Foundations of Computing II
Lecture 11: Bloom Filters (continued)
& Zoo of Random Variables I
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Announcements

• Midterm feedback/evaluation is open till next Tuesday. 
Please take a few mins to fill it out. 
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Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Applications
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Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://blog.bubbasgarage.com/2019/04/photos-from-biltmore-blooms.html
https://creativecommons.org/licenses/by-nc-nd/3.0/


Bloom Filters

• Stores information about a set of elements 𝑆 ⊆ 𝑈.
• Supports two operations:

1. add(𝑥)	- adds 𝑥 ∈ 𝑈 to the set 𝑆 
2. contains(𝑥) – ideally: true if 𝑥 ∈ 𝑆, false otherwise
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Possible false positives
Combine with fallback mechanism – can distinguish false 
positives from true positives with extra cost

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?” 

for any 𝑥 ∈ 𝑈.
2. Minimal storage requirements.



Bloom Filters – Ingredients 
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Basic data structure is a 𝑘×𝑚 binary array 
“the Bloom filter”
• 𝑘 rows 𝑡!, … , 𝑡", each of size 𝑚
• Think of each row as an 𝑚-bit vector

𝑘 different hash functions 𝐡!, … , 𝐡": 𝑈 → [𝑚]  

t1 1 0 1 0 0

t2 0 1 0 0 1

t3 1 0 0 1 0

We idealize each hash function 𝐡! as assigning each input x to a 
random output y in [m] 



Bloom Filters – Three operations

• Set up Bloom filter for 𝑆 = ∅

• Update Bloom filter for  𝑆 ← 𝑆 ∪ {𝑥}

• Check if 𝑥 ∈ 𝑆
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function INITIALIZE(𝑘,𝑚)
       for 𝑖 = 1,… , 𝑘: do
              𝑡! = new bit vector of 𝑚 0s

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡![ℎ! 𝑥 ] = 1

function CONTAINS(𝑥)
       return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧ ⋯∧ 𝑡# ℎ# 𝑥 == 1



Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE(𝑘,𝑚)
       for 𝑖 = 1,… , 𝑘: do
              𝑡! = new bit vector of 𝑚 0s

Bloom filter 𝒕 of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)
ℎ1(“thisisavirus.com”) → 2 



Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

add(“thisisavirus.com”)



add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ3(“thisisavirus.com”) → 4 

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 2 

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Bloom Filters: Example

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

contains(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 

function CONTAINS(𝑥)
        return 𝑡) ℎ) 𝑥 == 1 ∧ 𝑡* ℎ* 𝑥 == 1 ∧ ⋯∧ 𝑡+ ℎ+ 𝑥 == 1

Since all conditions satisfied, returns True (correctly)



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

Since all conditions satisfied, returns True (incorrectly)

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 

function CONTAINS(𝑥)
        return 𝑡) ℎ) 𝑥 == 1 ∧ 𝑡* ℎ* 𝑥 == 1 ∧ ⋯∧ 𝑡+ ℎ+ 𝑥 == 1



Analysis: False positive probability

Question: For an element 𝑥 ∈ 𝑈, what is the probability that 
contains(𝑥) returns true if add(𝑥) was never executed before? 

Probability over what?!        

Assumptions for the analysis (somewhat stronger than for ordinary 
hashing):
• Each 𝐡0 𝑥  is uniformly distributed in [𝑚] for all 𝑥 and 𝑖
• Hash function outputs for each 𝐡0are mutually independent (not 

just in pairs)
• Different hash functions are independent of each other

Over the choice of the 𝒉1, … , 𝒉2



False positive probability – Events 
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Assume we perform add 𝑥1 , … ,add 𝑥3  
+ contains(𝑥) for 𝑥 ∉ {𝑥1, … , 𝑥3} 

Event 𝐸0  holds iff 𝐡0 𝑥 ∈ {𝐡0 𝑥1 , … , 𝐡0 𝑥3 }

𝑃 false	positive = 𝑃 𝐸! ∩ 𝐸/ ∩⋯∩ 𝐸" =I
&0!

"

𝑃(𝐸&)

𝐡), … , 𝐡+  independent 



False positive probability – Events 
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Event 𝐸0  holds iff 𝐡0 𝑥 ∈ {𝐡0 𝑥1 , … , 𝐡0 𝑥3 }

𝑃 𝐸&4 =K
50!

6

𝑃 𝐡& 𝑥 = 𝑧 ⋅ 𝑃 𝐸&4 	𝐡& 𝑥 = z)

Event 𝐸04  holds iff 𝐡0 𝑥 ≠ 𝐡0 𝑥1  and … and 𝐡0 𝑥 ≠ 𝐡0 𝑥3  

LTP



False positive probability – Events 
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𝑃 𝐸04 	𝐡0 𝑥 = 𝑧 =

Event 𝐸,-  holds iff 𝐡, 𝑥 ≠ 𝐡, 𝑥)  and … 
and 𝐡, 𝑥 ≠ 𝐡, 𝑥.  

𝑃 𝐡0 𝑥1 ≠ 𝑧,… , 𝐡0 𝑥3 ≠ 𝑧	|	𝐡0 𝑥 = 𝑧

=;
561

3

𝑃 𝐡0 𝑥5 ≠ 𝑧

=;
561

3

1 −
1
𝑚

= 1 −
1
𝑚

3

𝑃 𝐸04 = >
761

8

𝑃 𝐡0 𝑥 = 𝑧 ⋅ 𝑃 𝐸04 	𝐡0 𝑥 = z) = 1 −
1
𝑚

3

= 	𝑃 𝐡0 𝑥1 ≠ 𝑧,… , 𝐡0 𝑥3 ≠ 𝑧	Independence of values 
of 𝒉,  on different inputs

Outputs of 𝒉,  uniformly spread



False positive probability – Events 
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Event 𝐸0  holds iff 𝐡0 𝑥 ∈ {𝐡0 𝑥1 , … , 𝐡0 𝑥3 }

Event 𝐸04  holds iff 𝐡0 𝑥 ≠ 𝐡0 𝑥1  and … and 𝐡0 𝑥 ≠ 𝐡0 𝑥3  

𝑃 𝐸04 = 1 −
1
𝑚

3

FPR =I
&0!

"

1 − 𝑃 𝐸&4 = 1 − 1 −
1
𝑚

: "



False Positivity Rate – Example 
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FPR = 1 − 1 −
1
𝑚

: "

e.g., 𝑛 = 5,000,000
𝑘 = 30
𝑚 = 2,500,000

FPR = 1.28%



Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with 𝑘	 = 	30 and 𝑚 = 	2,500,000

(optimistic) 
5,000,000	×40𝐵 = 200MB 

2,500,000	×30 = 75,000,000 bits 

< 10 MB 



Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 3%

100000	×0.03	×500ms
1ms +

+2000×500	ms

102000
≈ 	25.51ms	

Bloom filter lookup
malicious URLs

0.5 seconds DB lookup
false positives

total URLs



Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!
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Brain Break
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Motivation for “Named” Random Variables

Random Variables that show up all over the place. 
– Easily solve a problem by recognizing it’s a special case of one of 

these random variables.

Each RV introduced today will show:
– A general situation it models
– Its name and parameters
– Its PMF, Expectation, and Variance
– Example scenarios you can use it
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Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Applications
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Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (integer) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

28

Example: value shown on one 
roll of a fair die



Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (integer) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation: 𝑋 ∼ Unif(𝑎, 𝑏)

PMF: P 𝑋 = 𝑖 = 1
9	;<=1

Expectation: 𝔼 𝑋 = <=9
>

Variance: Var(𝑋) = (9;<)(9	;<=>)
1>
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Example: value shown on one 
roll of a fair die is Unif(1,6):

•  𝑃(𝑋 = 𝑖) = 1/6
• 	𝔼 𝑋 = 7/2
•  Var 𝑋 = 35/12



Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Applications
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Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.
Notation: 𝑋 ∼ Ber(𝑝)
PMF: 𝑃 𝑋 = 1 = 𝑝, 	𝑃 𝑋 = 0 = 1 − 𝑝
Expectation: 
Variance:
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Poll: 
pollev.com/rachel312
 Mean Variance
A.  𝑝   𝑝
B.  𝑝   1 − 𝑝
C.  𝑝   𝑝(1 − 𝑝)
D. 	𝑝   𝑝*



Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.
Notation: 𝑋 ∼ Ber(𝑝)
PMF: 𝑃 𝑋 = 1 = 𝑝, 	𝑃 𝑋 = 0 = 1 − 𝑝
Expectation: 𝔼 𝑋 = 𝑝       Note: 𝔼 𝑋> = 𝑝
Variance: Var 𝑋 = 𝔼 𝑋> − 𝔼 𝑋 > = 𝑝	 − 𝑝> = 𝑝(1 − 𝑝)
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Examples:
• Coin flip
• Randomly guessing on a 

MC test question
• A server in a cluster fails
• Any indicator RV



Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Applications
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Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛 
independent random variables 𝑌0 ∼ Ber 𝑝 .                                                     
𝑋 is a Binomial random variable where  𝑋 = ∑0613 𝑌0
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Examples:
• # of heads in 𝑛 coin flips
• # of 1s in a randomly generated n 

bit string
• # of servers that fail in a cluster of 

𝑛	computers
• # of bit errors in file written to disk
• # of elements in a bucket of a 

large hash table

Poll: 
pollev.com/rachel312
𝑃(𝑋 = 𝑘)
A.  𝑝+ 1 − 𝑝 ./+

B.  𝑛𝑝
C. .

+ 𝑝
+ 1 − 𝑝 ./+

D. .
./+ 𝑝

+ 1 − 𝑝 ./+



Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛 
independent random variables 𝑌0 ∼ Ber 𝑝 .                                                      
𝑋 is a Binomial random variable where  𝑋 = ∑0613 𝑌0

Notation: 𝑋 ∼ Bin(𝑛, 𝑝)
PMF: 𝑃 𝑋 = 𝑘 = 3

2 𝑝
2 1 − 𝑝 3;2

Expectation:
Variance:
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Poll: 
pollev.com/Rachel312
 Mean  Variance
A. 	𝑝    𝑝
B. 	𝑛𝑝    𝑛𝑝(1 − 𝑝)
C. 	𝑛𝑝    𝑛𝑝*
D. 	𝑛𝑝    𝑛*𝑝



Binomial Random Variables

A discrete random variable 𝑋 that is the number of successes in 𝑛 
independent random variables 𝑌0 ∼ Ber 𝑝 .                                                     
𝑋 is a Binomial random variable where  𝑋 = ∑0613 𝑌0

Notation: 𝑋 ∼ Bin(𝑛, 𝑝)
PMF: 𝑃 𝑋 = 𝑘 = 3

2 𝑝
2 1 − 𝑝 3;2

Expectation: 𝔼 𝑋 = 𝑛𝑝 
Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)
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Mean, Variance of the Binomial

If 𝑌1, 𝑌>, … , 𝑌3 ∼ Ber(𝑝) and independent (i.i.d.), then
𝑋 = ∑0613 𝑌0,    𝑋 ∼ Bin(𝑛, 𝑝)

Claim 𝔼 𝑋 = 𝑛𝑝

𝔼 𝑋 = 𝔼 >
061

3

𝑌0 =>
061

3

𝔼[𝑌0] = 𝑛𝔼 𝑌1 = 𝑛𝑝

Claim Var 𝑋 = 𝑛𝑝 1 − 𝑝

Var 𝑋 = Var >
061

3

𝑌0 =>
061

3

Var 𝑌0 = 𝑛Var 𝑌1 = 𝑛𝑝(1 − 𝑝)
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“i.i.d.” is a commonly used phrase.
It means “independent & identically distributed”



Binomial PMFs
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Binomial PMFs
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). 
Let 𝑋 be the number of corrupted bits. 
What is 𝔼[𝑋]? 
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Poll: 
pollev.com/rachel312
a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough information 

to compute



Welcome to the Zoo! (today) 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)
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𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝# 1 − 𝑝 $%#

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	


