CSE 312 Foundations of Computing II

Lecture 11: Bloom Filters (continued) & Zoo of Random Variables I

Announcements

• Midterm feedback/evaluation is open till next Tuesday. Please take a few mins to fill it out.

Agenda

- Bloom Filters Example & Analysis <
- Zoo of Discrete RVs
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Bloom Filters

to the rescue

(Named after Burton Howard Bloom)

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Possible false positives Combine with fallback mechanism – can distinguish false

5

positives from true positives with extra cost

Two goals:

- **1.** Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

t ₁	1	0	1	0	0
t ₂	0	1	0	0	1
t ₃	1	0	0	1	0

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- $k \text{ rows } t_1, \dots, t_k$, each of size m
- Think of each row as an *m*-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k: U \to [m]$

We idealize each hash function h_1 as assigning each input x to a random output y in [m]

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Bloom filter *t* of length m = 5 that uses k = 3 hash functions

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Since all conditions satisfied, returns True (correctly)

contains("thisisavirus.com")	Index →	0	1	2	3	4
h_1 ("thisisavirus.com") $\rightarrow 2$	t ₁	0	0	1	0	0
h_1 ("thisisavirus.com") $\rightarrow 1$	t ₂	0	1	0	0	0
h_3 ("thisisavirus.com") $\rightarrow 4$	t ₃	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallvnotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	Ð	1	0	0
t ₂		1	0	0	0
t ₃	0	0	0	0	$\left(1 \right)$

Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Since all conditions satisfied, returns True (incorrectly)

	Index →	0	1	2	3	4
contains("verynormalsite.com")	,					
h_1 ("verynormalsite.com") $\rightarrow 2$	t ₁	0	1		0	0
$h_1(\text{verynormalsite.com}) \rightarrow 2$ $h_2(\text{"verynormalsite.com"}) \rightarrow 0$	t ₂	1	1	0	0	0
h_3 ("verynormalsite.com") $\rightarrow 4$	t ₃	0	0	0	0	(1)

Analysis: False positive probability

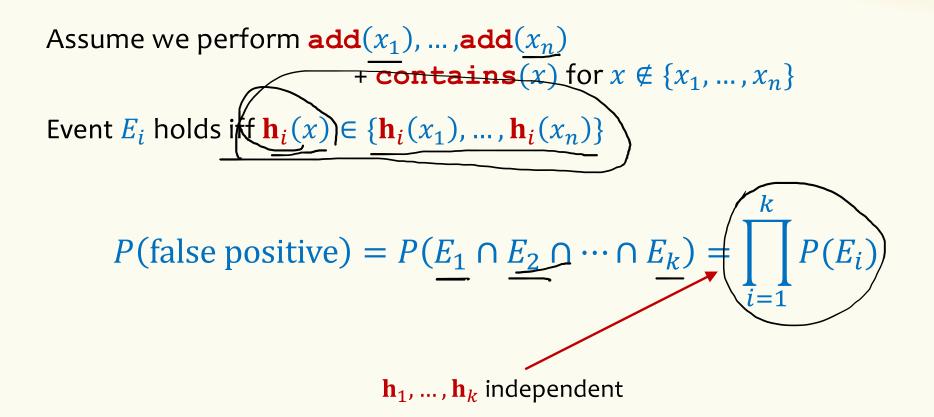
Question: For an element $x \in U$, what is the probability that **contains**(x) returns true if **add**(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

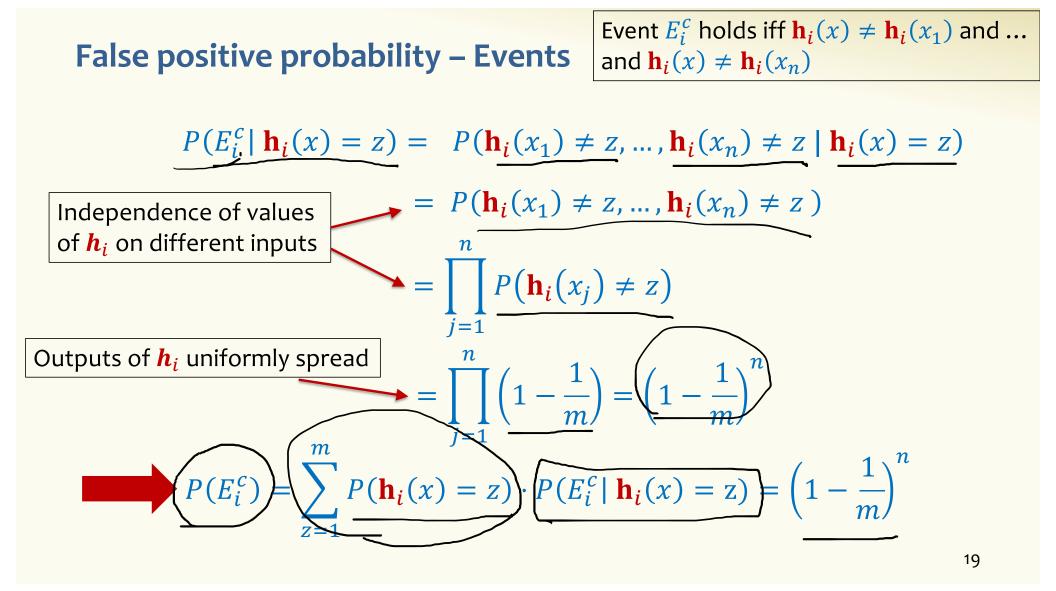
False positive probability – Events



False positive probability – Events

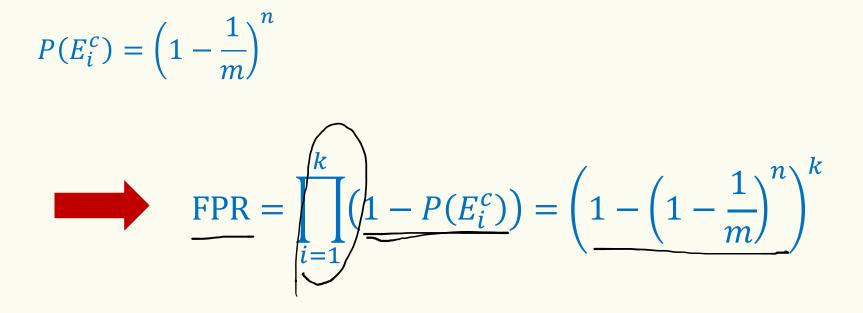
Event
$$E_i$$
 holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)\}$
Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and \dots and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m \frac{P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)}{\sqrt{1}}$$



False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$



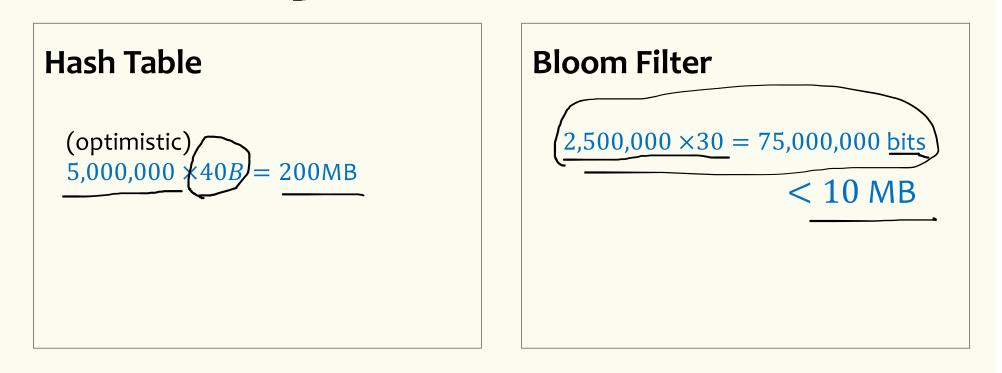
False Positivity Rate – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^k\right)$$

e.g., n = 5,000,000 k = 30 m = 2,500,000FPR = 1.28%

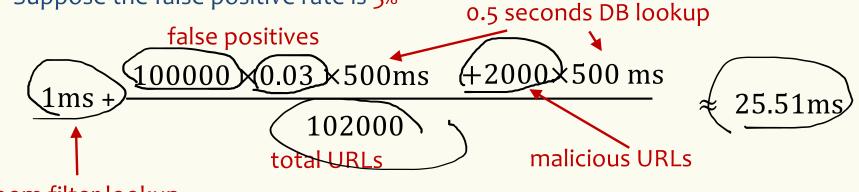
Comparison with Hash Tables - Space

- Google storing <u>5 million URLs</u>, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000



Time

- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%



Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Brain Break

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables 🗲
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Discrete Uniform Random Variables

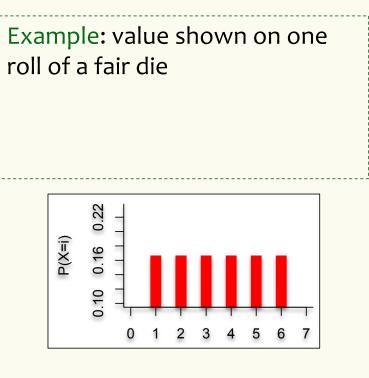
A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:



Discrete Uniform Random Variables

A discrete random variable *X* equally likely to take any (integer) value between integers *a* and *b* (inclusive), is uniform.

Notation:
$$X \sim \text{Unif}(a, b)$$

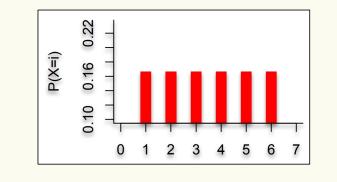
PMF: $P(X = i) = \frac{1}{b - a + 1}$
Expectation: $\mathbb{E}[X] = \frac{a + b}{2}$
Variance: $Var(X) = \frac{(b - a)(b - a + 2)}{12}$

Example: value shown on one roll of a fair die is Unif(1,6):

•
$$P(X = i) = 1/6$$

• $\mathbb{E}[X] = 7/2$

•
$$Var(X) = 35/12$$



Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables 🗲
 - Binomial Random Variables
 - Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ PMF: P(X = 1) = p, P(X = 0) = 1 - pExpectation: Variance: Poll: pollev.com/rachel312

Po po		n/rachel312	
	Mean	Variance	
Α.	p	p	
Β.	p	1 - p	
С.	p	p(1-p)	
D.	p	p^2	
'			31

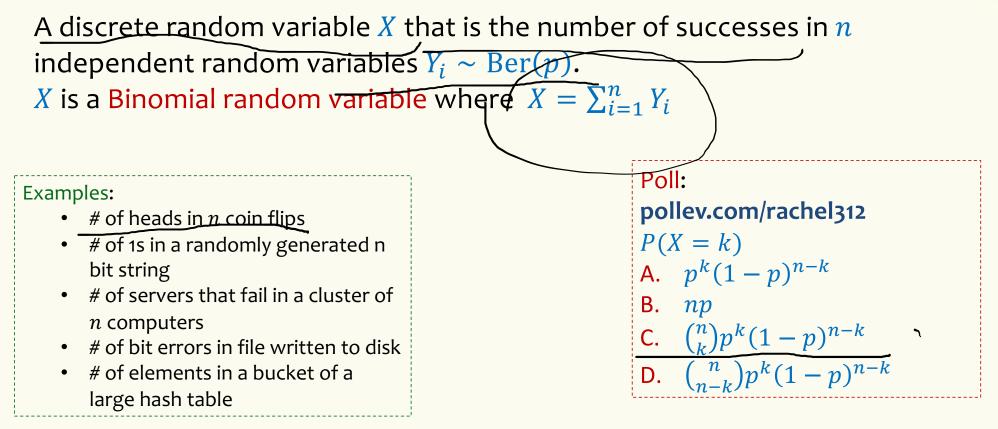
Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ **PMF:** P(X = 1) = p, P(X = 0) = 1 - p**Expectation:** $\mathbb{E}[X] = p$ Note $\mathbb{E}[X^2] = p$ Variance: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1-p)$ **Examples:** • Coin flip Randomly guessing on a MC test question A server in a cluster fails • Any indicator RV

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables 🗲
 - Applications

Binomial Random Variables



Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$
PMF: $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$
Expectation:
Variance:

Ро	ll:				
ро	pollev.com/Rachel312				
	Mean	Variance			
Α.	p	p			
1	np	np(1-p)			
	np	np^2			
D.	np	n^2p			

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$ Expectation: $\mathbb{E}[X] = np$ Variance: Var(X) = np(1-p)

Mean, Variance of the Binomial

"i.i.d." is a commonly used phrase. It means "independent & identically distributed"

If
$$Y_1, Y_2, \dots, Y_n \sim \text{Ber}(p)$$
 and independent (i.i.d.), then
 $X = \sum_{i=1}^n Y_i, \quad X \sim \text{Bin}(n, p)$

Claim
$$\mathbb{E}[X] = np$$

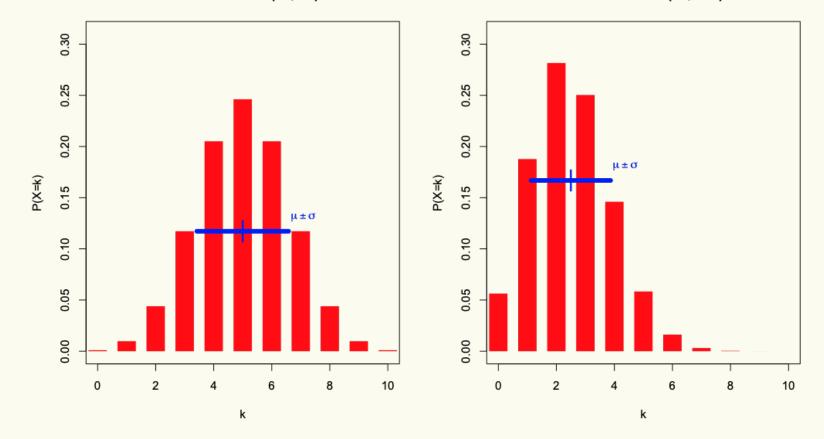
 $\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$
Claim $Var(X) = np(1-p)$

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(Y_{i}) = n\operatorname{Var}(Y_{1}) = np(1-p)$$

Binomial PMFs

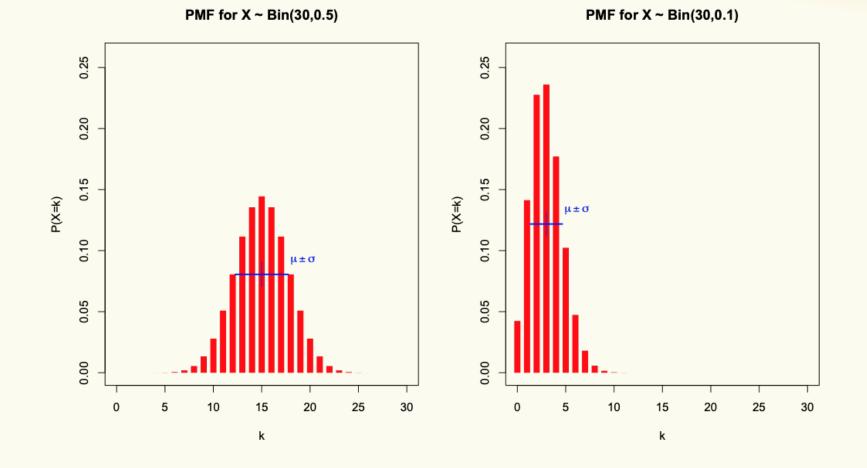
PMF for X ~ Bin(10,0.5)

PMF for X ~ Bin(10,0.25)



38

Binomial PMFs



39

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let *X* be the number of corrupted bits.

What is $\mathbb{E}[X]$?

Poll:			
pollev.com/rachel312			
a.	1022.99		
b.	1.024		
с.	1.02298		
d.	1		
e.	Not enough information		
	to compute		

Welcome to the Zoo! (today) 🏷 🖓 😭 🦮

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$ $\mathbb{E}[X] = \frac{a + b}{2}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$
$\mathbb{E}[X] = \frac{a+b}{2}$	$\mathbb{E}[X] = p$	$\mathbb{E}[X] = np$
$Var(X) = \frac{\frac{2}{(b-a)(b-a+2)}}{12}$	Var(X) = p(1-p)	Var(X) = np(1-p)