CSE 312

Foundations of Computing II

Lecture 11: Bloom Filters (continued)
\& Zoo of Random Variables I

Announcements

- Midterm feedback/evaluation is open till next Tuesday. Please take a few mins to fill it out.

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Possible false positives
Combine with fallback mechanism - can distinguish false positives from true positives with extra cost
Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array

t_{1}	1	0	1	0	0
t_{2}	0	1	0	0	1
t_{3}	1	0	0	1	0

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$
We idealize each hash function \mathbf{h}_{1} as assigning each input x to a random output y in [m]

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function } \operatorname{INITIALIZE}(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k: \mathbf{d o}$
$t_{i}\left[h_{i}(x)\right]=1$

- Check if $x \in S$

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```


Bloom Filters: Example

Bloom filter \boldsymbol{t} of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE( }k,m
    for i=1, .., k: do
\(t_{i}=\) new bit vector of \(m 0 \mathrm{~s}\)
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{contains}(x)$
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
Since all conditions satisfied, returns True (correctly)

	Index \rightarrow	0	1	2	3	4
contains("thisisavirus.com") $h_{1}($ "thisisavirus.com") $\rightarrow 2$	t_{1}	0	0	1	0	0
h_{2} ("thisisavirus.com") $\rightarrow 1$	t_{2}	0	1	0	0	0
h_{3} ("thisisavirus.com") $\rightarrow 4$	t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$ h_{2} ("totallynotsuspicious.com") $\rightarrow 0$ h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{contains}(x)$
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
Since all conditions satisfied, returns True (incorrectly)

contains("verynormalsite.com")	Index \rightarrow	0	1	2	3	4
	t_{1}	0	1	(1)	0	0
h_{2} ("verynormalsite.com") $\rightarrow 0$	t_{2}	(1)	1	0	0	0
h_{3} ("verynormalsite.com") $\rightarrow 4$	t_{3}	0	0	0	0	(1)

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (\underline{x}) returns true if $\operatorname{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}$
Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_{i}(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each \mathbf{h}_{i} are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability - Events

Assume we perform $\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)$

+ Contains (x) for $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$
Event E_{i} holds iff $\left.\mathbf{h}_{i}(x)\right\} \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$

False positive probability - Events

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\} \quad h()$

$$
P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} \frac{P\left(\mathbf{h}_{i}(x)=z\right)}{\}} \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)
$$

LTP

False positive probability - Events

Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
\begin{aligned}
& \underline{P\left(E_{i .}^{c} \mid \mathbf{h}_{i}(x)=z\right)}=P\left(\underline{\mathbf{h}_{i}\left(x_{1}\right) \neq z}, \ldots, \underline{\mathbf{h}_{i}\left(x_{n}\right) \neq z} \mid \underline{\mathbf{h}_{i}(x)=z}\right) \\
& \xrightarrow{\begin{array}{l}
\text { Independence of values } \\
\text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{array} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)}
\end{aligned}
$$

False positive probability - Events

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\left(1-\frac{1}{m}\right)^{n}
$$

False Positivity Rate_ Example

$$
\operatorname{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{\frac{k}{2}}
$$

$$
\text { e.g., } \begin{aligned}
& n=5,000,000 \\
& k=30 \\
& m=2,500,000
\end{aligned}
$$

$F P R=1.28 \%$

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k=30$ and $m=2,500,000$

Bloom Filter

$\underline{2,500,000 \times 30}=75,000,000$ bits
$<10 \mathrm{MB}$

Time

- Say avg user visits 102,000 URXs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%
0.5 seconds DB lookup

Bloom filter lookup

Bloom Filters typical of....
... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Brain Break

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:
PMF:
Expectation:
Variance:

Example: value shown on one roll of a fair die

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}(a, b)$
PMF: $\mathrm{P}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is Unif(1,6):

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$

Expectation:

Variance:

```
Poll:
pollev.com/rachel312
    Mean Variance
A. p
        p
B. p
    1-p
C. p p(1-p)
D. p p 2
```


Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1) \equiv p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p$ Note $\mathbb{E}\left[X^{2}\right]=P$
Variance: $\operatorname{Var}(X)={\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]}^{2}=p-p^{2}=p(1-p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Examples:

- \# of heads in n coinflips
- \# of 1s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation:
Variance:

Poll:		
pollev.com/Rachel312		
	\quad Mean	Variance
A.	p	p
B.	$n p$	$n p(1-p)$
C.	$n p$	$n p^{2}$
D.	$n p$	$n^{2} p$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial "i.i.d." is a commonly used phrase.

 It means "independent \& identically distributed"If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d.), then $X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$

Claim $\mathbb{E}[X]=n p$

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(10,0.5)$

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 2 5})$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, \mathbf{0 . 1})$

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What is $\mathbb{E}[X]$?

Poll:
pollev.com/rachel312
a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough information to compute

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$$
X \sim \operatorname{Bin}(n, p)
$$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

