CSE 312

Foundations of Computing II

Lecture 12: Zoo of Discrete RVS part II Poisson Distribution

Announcements

- Midterm info will be posted today on Ed.
- Including instruction for midterm
- and resources for midterm
- Midterm feedback form will close on Tuesday.
- Please take a few mins to fill it out! Thank you!
- +

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$

PMF:

Expectation:
Variance:

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?
$\not Z_{i}$: the event that i th try 13 successful $=1000$ notes all success

$$
P\left(Y_{i}=1\right)=0.999^{1000}
$$

$$
X \sim \operatorname{Geo}\left(P=0.999^{1000}\right) \quad \Rightarrow E[X]=\frac{1}{0.999^{1000}}
$$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial randon variable with parameters r, p.
Notation: ${\underset{Z}{i}}_{X}^{X}=\mathbb{K} \operatorname{NegBin}(r, p)$
PMF: $P(\underbrace{(X=k)}_{\text {(X=k }}=\underbrace{}_{\binom{k-1}{k-1}} p^{r}\left(\underline{1-p)^{k-r}}\right.$
Expectation: $\underbrace{\mathbb{E}[X]=\frac{r}{p}}$
Variance: $\operatorname{Var}(X)=\frac{(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$

Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=$ \# of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour

X. \# cars passing through a light in 1 hour. $\mathbb{E}[X]=3$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

This gives us n independent intervals X_{i} What should p be?
Assume at most one car per interval pollev.com/rachel312
$p=$ probability car arrives in an interval
A. $3 / n$

$$
\frac{3}{n} \quad 3=E[X]=\bar{E}\left[\sum X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=n \cdot p \begin{array}{ll}
\text { C. } & 3 \\
\text { D. } & 3 / 60
\end{array}
$$

Example - Model the process of cars passing through a light in 1 hour

$X=$ \# cars passing through a light in 1 hour. Disjoint time intervals are independent.
Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$
1 hour
Discrete version: n intervals, each of length $1 / n$.

In each interval, there is a car with probability $p=\lambda / n$ assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$
$P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}$

$$
\text { indeed! } \mathbb{E}[X]=p n=\lambda
$$

Don't like discretization

$$
\begin{aligned}
& \rightarrow P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \\
& \left(1-\frac{1}{z}\right)^{z \cdot \lambda} z=\frac{n^{17}}{\lambda}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda($ denoted $X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-(\lambda)} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour

Assume
fixed average rate

- \# of photons hitting a light detector in a given interval
- \# of patients arriving to ER within an hour J

Probability Mass Function

$$
P\left(X=(i)^{\prime}=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}\right.
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i}
$$

Theorem. If X is a Poisson RV with parameter λ, then

Proof. $\left.\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i!}-i\right)=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda(\text { see prior slides!) }
\end{aligned}
$$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$

$$
\begin{aligned}
& \text { Proof. } \mathbb{E}\left[X^{2}\right]=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i \\
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)
\end{aligned}
$$

> Similar to the previous proof
> Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{\lambda}}{i!}
$$

Poisson approximates binomial when:

n is very large p sery small, and $\lambda-n p$ is "moderate"

$$
\text { e.g. }(n>20 \text { and } p<0.05) \text {, }(n>100 \text { and } p<0.1)
$$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

as $n \rightarrow \infty$, Binomial $(n, p=\lambda / n) \rightarrow p o i(\lambda)$

From Binomial to Poisson

\[

\]

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$

What is probability that message arrives uncorrupted?
Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=0.01\right)$

$$
P(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!} \approx 0.990049834
$$

Using $Y \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
P(Y=0) \approx 0.990049829
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

$P(Z=z)=?$
pollev.com/rachel312

1. $P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j)$
2. $P(Z=z)=\sum_{j=0}^{\infty} P(X=j, Y=z-j)$
3. $P(Z=z)=\sum_{j=0}^{Z} P(Y=z-j \mid X=j) P(X=j)$
4. $P(Z=z)=\sum_{j=0}^{Z} P(Y=z-j \mid X=j)$
A. All of them are right
B. The first 3 are right
C. Only 1 is right
D. Don't know

Proof

$$
\begin{array}{ll}
P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) & \text { Law of total probability } \\
=\sum_{j=0}^{Z} P(X=j) P(Y=z-j)=\Sigma_{j=0}^{z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \text { Independence } \\
=e^{-\lambda_{1}-\lambda_{2}}\left(\sum_{j=0}^{z} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) & \\
=e^{-\lambda}\left(\sum_{j=0}^{Z} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} & \\
=e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} & \begin{array}{l}
\text { Binomial } \\
\text { Theorem }
\end{array}
\end{array}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

