CSE 312
Foundations of Computing Il

Lecture 12: Zoo of Discrete RVS part Il
Poisson Distribution



Announcements

* Midterm info is posted
— Q&A session next Tuesday 4pm on Zoom

— Practice midterm + other practice materials posted this
Wednesday
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Agenda

e 700 of Discrete RVs

— Uniform Random Variables, Part |
— Bernoulli Random Variables, Part |
— Binomial Random Variables, Part |

— Geometric Random Variables 4
— Negative Binomial Random Variables
— Hypergeometric Random Variables

— Poisson Distribution
* Approximate Binomial distribution using Poisson distribution

— Applications



Geometric Random Variables

A discrete random variable X that models the number of independent
trials Y; ~ Ber(p) before seeing the first success.

X is called a Geometric random variable with parameter p.

-------------------------------------------------------------------

Examples:
Notation: X ~ Geo(p) - # of coin flips until first
| head
PMEF: ~*» #ofrandom guesses on
Expectation: MC questions until you
. get one right
Variance:

* #of random guesses at a
password until you hit it



Geometric Random Variables

A discrete random variable X that models the number of independent
trials Y; ~ Ber(p) before seeing the first success.

X is called a Geometric random variable with parameter p.

-------------------------------------------------------------------
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Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You
have been practicing, so you have a probability of 0.999 of getting each note
correct (independent of the others). If you mess up a single note in the song, you
must start over and play from the beginning. Let X be the number of times you
have to play the song from the start. What is E[X]?
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Negative Binomial Random Variables

A discrete random variable X that models the number of independent
trials ¥; ~ Ber(p) before seeing the " success.

Equivalently, X = }\i_, Z; where Z; ~ Geo(p).

X is called a Negative Binomial random variable with parameters r, p.

Notation: X ~ NegBin(r, p)
PMF: P(X = k) = (*_D)p"(1 —p)k"

r

Expectation: E[X | = S

r(1-p)
pz

Variance: Var(X) =



Hypergeometric Random Variables

A discrete random variable X that models the number of successes inn
draws (without replacement) from N items that contain K successes in
total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: X ~ HypGeo(N, K, n)

G e

PMF: P(X = k) = ™

Expectation: E[X| = n%

K(N-K)(N-n)
N%2(N-1)

Variance: Var(X) = n
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Hope you enjoyed the zoo! @Sy
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b by Unknown Author
| under CC BY-SA
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https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/
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Preview: Poisson

Model: # events that occur in an hour

— Expect to see 3 events per hour (but will be random)
— The expected number of events in t hours, is 3¢
— Occurrence of events on disjoint time intervals is independent

Example — Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour

14



Example - Model the process of cars passing through a light in 1 hour

X =# cars passing through a lightin 1 hour. E[X] =3

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length 1/n

{ 1/n
’ : | | | | | | | | | |
| | | | | | | | | |
This gives us n independent intervals What should p be?
pollev.com/rachel312
Assume at most one car per interval A. 3/n
p = probability car arrives in an interval B. 2”
C.

D. 3/60 15



Example - Model the process of cars passing through a light in 1 hour

X =# cars passing through a lightin 1 hour.  Disjoint time intervals are independent.

Know: E[X]| = A for some given 1 > 0

1 hkour

I@I I |@I€?|

ol o | o | 4

1/
==L Juml J
1 1

0o 0o

Discrete version: n intervals, each of length 1/n .
In each interval, there is a car with probability p = 1/n (assume < 1 car can pass by)

Each interval is Bernoulli: X; = 1 if carin i*" interval (0 otherwise). P(X; = 1) = 1 /n

oTLt emmen -0 = () (-3

n

indeed! E[X] = pn = A 16



Don’t like discretization X is binomial P(x = 1) = (7) () (1= 2"

1/n

We want now n — o

rr=0=() ) (- = e (A Y
\ J \ \ J
Y |
—>P(X )—e‘l-)l_i i e ot 17



Poisson Distribution

Siméon Denis Poisson
1781-1840

e Suppose “events” happen, independently, at an average rate of 4 per
PP PP P y g S

unit time.

* Let X be the actual number of events happening in a given time
unit. Then X is a Poisson r.v. with parameter 1 (denoted X ~ Poi(4))

and has distribution (PMF):

Several examples of “Poisson processes”:

* # of cars passing through a traffic light in 1 hour

» # of requests to web servers in an hour

* # of photons hitting a light detector in a given interval

 # of patients arriving to ER within an hour

Assume
fixed average rate
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Probability Mass Function
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https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

________________________________________________________

Validity of Distribution

________________________________________________________

We first want to verify that Poisson probabilities sum up to 1.

zP(X=i)=26_’1-T=e_A T=e‘le’1=1
i=0 i=0 . i=0 .

xi
ex = —
L!

1=0
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________________________________________________________

Expectation

________________________________________________________
_____________________________________________________________________________________________________________________________________________________________________

E[X] =4
0'e) 0'e) /11 0 i
Proof E[X]zZP(le) 1226_)1 -1 :Z:e—/1 A '
=0 =0 : i=1 (l N 1)
> /11—1
— -1,
4 Ze (i—1)!
i=1
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________________________________________________________

Variance

________________________________________________________

Proof. IE[XZ]=ZP(X=i)-i2=Ze"1-T-i2 =Ze"1- : i
: : L: : (i—1)!
1=0 1=0 =1
© L -1 . /1]
=AZ€ =1 i =AZ€ -j—!-(]+1)
=1 ]=0
= z:e’1 ]—'°j+z:e_’1 ; =12+
dn , ) 2 — Similar to the previous proof
= E[X] =4 =1 Verify offline.

mm) Var(X) = E[X?]-E[X]*’=2+21-2%=12 22
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e 700 of Discrete RVs

— Uniform Random Variables, Part |
— Bernoulli Random Variables, Part |
— Binomial Random Variables, Part |

— Geometric Random Variables
— Negative Binomial Random Variables
— Hypergeometric Random Variables

— Poisson Distribution
* Approximate Binomial distribution using Poisson distribution a

— Applications
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Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 > 0 is such
thatforalli =0,1,2,3 ..,

Poisson approximates binomial when:
nis very large, p is very small,and 4 = np is “moderate”
eg.(n > 20andp < 0.05), (n > 100andp < 0.1)

Formally, Binomial approaches Poisson in the limit as
n — oo (equivalently,p — 0)while holdingnp = 1

This Photo by Unknown Author is licensed
under CC BY-NC 24


https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

Probability Mass Function — Convergence of Binomials

03

Bin(10,0.5)

025

_-'Bin(15,1/3)

" ~~-Bin(20,0.25)

015

01

as n — o, Binomial(n, p = A/n) - poi(1) 25



From Binomial to Poisson

n — oo
P =4
p=--0 A
P(X =k) = (Z)p"(l —p)" ¥ n PX=k)=e". o
ELX] = np E[X] =2

Var(X) = np(1 - p) Yar(X) = 4
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Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

* Send bit string of lengthn = 10*

* Probability of (independent) bit corruptionisp = 107°
What is probability that message arrives uncorrupted?

Using X ~ Poi(A = np = 10*-107° = 0.01)
LA 0.01°
PX=0)=e* =e VLA ——~ 0.990049834
Using Y ~ Bin(10%,107°)
P(Y =0) = 0.990049829

27





http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Sum of Independent Poisson RVs

Theorem. Let X~Poi(A4;) and Y ~Poi(4,) such that 1 = 4; + 4,.
LletZ=X+Y. Forallz=0,123..,

More generally, let X; ~Poi(4,), -+, X,,~Poi(4,) such that 1 = X;4,.
Let Z = ZiXi

PZ=z)=e* 2

Z!
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Sum of Independent Poisson RVs

Theorem. Let X~Poi(4;) and Y~Poi(4,) suchthat A = 4; + 4,.
LetZ=X+Y.Forallz=0,123..,

PZ=2)=e* L
P(Z=2z) =7 pollev.com/rachel312
1. P(Z=2) = ijzo PX=jY=2z—)) A. All of them are right

B. The first 3 are right
C. Only1isright
D. Don’t know

P(Z=2)=32PX=jY=2z—))
P(Z=2z) =% PY =z—]jlX=))P(X =)
P(Z=2z)=%_PY =2z—]jlX=])

B W
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Proof

P(Z=z)=%_PX=jY=2z—)) Law of total probability

by A
_ _ _ N _ M a2
=X PX=)DPY =z—j)=X{,e"- i ez T Independence
1 .
— ,—A1—A Z J 24—
z! : 1
— ,—A Z ) 927]
° (ZFO jlz —j! Mtz )Z!

. " . Binomial
=e °(/11+/12)Z°Z—!=€ AT Theorem
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Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 = 0 is such
thatforalli =0,1,2,3 ...,

General principle:
* Events happen at an averagerate + Poisson approximates Binomial when n is large,

of 1 per time unit p is small, and np is moderate

* Number of events happeningata ¢ Sum of independent Poisson is still a Poisson
time unit X is distributed
according to Poi(4)
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