CSE 312 Foundations of Computing II

Lecture 12: Zoo of Discrete RVS part II Poisson Distribution

Announcements

- Midterm info is posted
 - Q&A session next Tuesday 4pm on Zoom
 - Practice midterm + other practice materials posted this
 Wednesday

Zoo of Random Variables

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$			
$P(X=k) = \frac{1}{b-a+1}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$			
$E[X] = \frac{a+b}{2}$	E[X] = p	E[X] = np			
$Var(X) = \frac{(b-a)(b-a+2)}{12}$	Var(X) = p(1-p)	$\operatorname{Var}(X) = np(1-p)$			
$X \sim Goo(n)$	$X \sim \text{NegBin}(r, n)$	$Y \sim HunCoo(N K m)$			
$X \sim \operatorname{deo}(p)$	$X \sim \operatorname{NegDin}(r, p)$	$X \sim \operatorname{HypGeO}(N, K, n)$			
$P(X = k) = (1 - p)^{k - 1}p$	$P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$	$P(X = k) = \frac{\binom{N}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$			
$E[X] = \frac{1}{n}$	$E[X] = \frac{r}{r}$	(n)			
$Var(X) = \frac{1-p}{1-p}$	p r(1-p)	$E[X] = n \frac{1}{N} K(N - K)(N - n)$			
$var(x) = \frac{1}{p^2}$	$Var(X) = \frac{p^2}{p^2}$	$Var(X) = n \frac{\pi (N - K)(N - K)}{N^2 (N - 1)}$			

Agenda

• Zoo of Discrete RVs

- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables 🗲
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
 - Approximate Binomial distribution using Poisson distribution
- Applications

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

X is called a Geometric random variable with parameter *p*.

Notation: $X \sim \text{Geo}(p)$	
PMF:	
Expectation:	
Variance:	

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

X is called a Geometric random variable with parameter *p*.

Notation: $X \sim \text{Geo}(p)$ PMF: $P(X = k) = (1 - p)^{k-1}p$ Expectation: $\mathbb{E}[X] = \frac{1}{p}$ Variance: $\text{Var}(X) = \frac{1-p}{p^2}$

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?

Agenda

• Zoo of Discrete RVs

- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
 - Approximate Binomial distribution using Poisson distribution
- Applications

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$ PMF: $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$ Expectation: $\mathbb{E}[X] = \frac{r}{p}$ Variance: $\text{Var}(X) = \frac{r(1-p)}{p^2}$

9

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$ PMF: $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ Expectation: $\mathbb{E}[X] = n \frac{K}{N}$ Variance: $\text{Var}(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$

Hope you enjoyed the zoo! 🏊 🛱 🏹 🦙 🦒

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$			
$P(X=k) = \frac{1}{b - a + 1}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$			
$\mathbb{E}[X] = \frac{a+b}{2}$ $(b-a)(b-a+2)$	$\mathbb{E}[X] = p$	$\mathbb{E}[X] = np$			
$Var(X) = \frac{(b-a)(b-a+2)}{12}$	Var(X) = p(1-p)	Var(X) = np(1-p)			
$X \sim Geo(n)$	$X \sim \operatorname{NegBin}(r n)$	$X \sim \text{HypGeo}(N K n)$			
$D(Y - k) - (1 - n)^{k-1}n$	$P(X = k) = \binom{k-1}{n^r (1-n)^{k-r}}$	$\binom{K}{k}\binom{N-K}{n-k}$			
$\mathbb{P}(X = \kappa) = (1 - p) p$ $\mathbb{E}[X] = \frac{1}{-}$	$\mathbb{P}(X = k) = \binom{r}{r-1} p (1-p)$ $\mathbb{E}[X] = \frac{r}{-1}$	$P(X = k) = \frac{M - M}{\binom{N}{n}}$			
$\frac{p}{Var(X) - \frac{1-p}{2}}$	$\frac{m[X]}{p} \frac{p}{r(1-p)}$	$\mathbb{E}[X] = n \frac{K}{N} K(N - K)(N - n)$			
p^2	$\operatorname{Var}(X) = \frac{p^2}{p^2}$	$Var(X) = n \frac{N(N - N)(N - N)}{N^2(N - 1)}$			

to by Unknown Author ed under <u>CC BY-SA</u>

Agenda

• Zoo of Discrete RVs

- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
 - Approximate Binomial distribution using Poisson distribution
- Applications

Preview: Poisson

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour

Example – Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. $\mathbb{E}[X] = 3$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into *n* intervals of length 1/n

	1	1			I			
This gives us <i>n</i> independent intervals			What should <i>p</i> be? pollev.com/rachel312					
Assume at most one ca	ir per int	erval		Α.	3/n			
p = probability car arrives in an interval			/al	Β.	3 <i>n</i>			
			С.	3				
				D.	3/60			15

Example – Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X] = \lambda$ for some given $\lambda > 0$

Discrete version: *n* intervals, each of length 1/n. In each interval, there is a car with probability $p = \lambda/n$ (assume ≤ 1 car can pass by)

Each interval is Bernoulli: $X_i = 1$ if car in i^{th} interval (0 otherwise). $P(X_i = 1) = \lambda / n$

$$X = \sum_{i=1}^{n} X_{i} \qquad X \sim \operatorname{Bin}(n, p) \qquad P(X = i) = {\binom{n}{i}} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

indeed! $\mathbb{E}[X] = pn = \lambda$ 16

X is <u>binomial</u> $P(X = i) = {\binom{n}{i}} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$

We want now $n \rightarrow \infty$

$$P(X = i) = {\binom{n}{i}} {\binom{\lambda}{n}}^{i} {\left(1 - \frac{\lambda}{n}\right)}^{n-i} = \frac{n!}{(n-i)! n^{i}} \frac{\lambda^{i}}{i!} {\left(1 - \frac{\lambda}{n}\right)}^{n} {\left(1 - \frac{\lambda}{n}\right)}^{-i}$$

$$\rightarrow P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
17

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Several examples of "Poisson processes":

- *#* of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval fixed
- # of patients arriving to ER within an hour

fixed average rate

Assume

Probability Mass Function

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Validity of Distribution

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

We first want to verify that Poisson probabilities sum up to 1.

Expectation

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

21

Theorem. If *X* is a Poisson RV with parameter λ , then $\mathbb{E}[X] = \lambda$

Proof.
$$\mathbb{E}[X] = \sum_{i=0}^{\infty} P(X=i) \cdot i = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$
$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!}$$
$$= \lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} = 1 \text{ (see prior slides!)}$$
$$= \lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} = \lambda \cdot 1 = \lambda$$

Variance

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Theorem. If *X* is a Poisson RV with parameter λ , then $Var(X) = \lambda$

Proof.
$$\mathbb{E}[X^2] = \sum_{i=0}^{\infty} P(X=i) \cdot i^2 = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{i!} \cdot i^2 = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{(i-1)!} i$$
$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot (j+1)$$
$$= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \right] = \lambda^2 + \lambda$$
Similar to the previous proof Verify offline.

 $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$ ²²

Agenda

• Zoo of Discrete RVs

- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
 - Approximate Binomial distribution using Poisson distribution
- Applications

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i)=e^{-\lambda}\cdot\frac{\lambda^{\iota}}{i!}$$

Poisson approximates binomial when:

n is very large, *p* is very small, and $\lambda = np$ is "moderate" e.g. (n > 20 and p < 0.05), (n > 100 and p < 0.1)

Formally, Binomial approaches Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u> 24

Probability Mass Function – Convergence of Binomials

25

From Binomial to Poisson

$$N \to \infty$$

$$np \to \infty$$

$$np = \lambda$$

$$np = \lambda$$

$$X \sim \text{Poi}(\lambda)$$

$$P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1-p)$$

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n = 10^4$
- Probability of (independent) bit corruption is $p = 10^{-6}$ What is probability that message arrives uncorrupted?

Using
$$X \sim \text{Poi}(\lambda = np = 10^4 \cdot 10^{-6} = 0.01)$$

 $P(X = 0) = e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-0.01} \cdot \frac{0.01^0}{0!} \approx 0.990049834$

Using $Y \sim Bin(10^4, 10^{-6})$ $P(Y = 0) \approx 0.990049829$

27

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0, 1, 2, 3 ...,

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0, 1, 2, 3 ...,

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

$$P(Z = z) = ?$$
1. $P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$
2. $P(Z = z) = \sum_{j=0}^{\infty} P(X = j, Y = z - j)$
3. $P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j) P(X = j)$
4. $P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

$$P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$$

Proof

$$P(Z = z) = \sum_{j=0}^{Z} P(X = j, Y = z - j)$$
Law of total probability
$$= \sum_{j=0}^{Z} P(X = j) P(Y = z - j) = \sum_{j=0}^{Z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z - j!}$$
Independence
$$= e^{-\lambda_{1} - \lambda_{2}} \left(\sum_{j=0}^{Z} \cdot \frac{1}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{Z} \frac{z!}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_{1} + \lambda_{2})^{z} \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!}$$
Binomial
Theorem

31

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $Poi(\lambda)$
- Poisson approximates Binomial when n is large,
 p is small, and np is moderate
- Sum of independent Poisson is still a Poisson