
CSE 312

Foundations of Computing II
Lecture 12: Zoo of Discrete RVS part II
 Poisson Distribution
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Announcements

• Midterm info is posted
– Q&A session next Tuesday 4pm on Zoom 
– Practice midterm + other practice materials posted this 

Wednesday
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Zoo of Random Variables🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝐸 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)
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𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝! 1 − 𝑝 "#!

𝐸 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝$

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
%
"

&#%
'#"
&
'

𝐸 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁$(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝" 1 − 𝑝 '#"

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝐸 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#(𝑝

𝐸 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝$



Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I
– Bernoulli Random Variables, Part I
– Binomial Random Variables, Part I

– Geometric Random Variables
– Negative Binomial Random Variables
– Hypergeometric Random Variables
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌! ∼ Ber 𝑝  before seeing the first success. 
𝑋 is called a Geometric random variable with parameter 𝑝. 

Notation: 𝑋 ∼ Geo(𝑝)
PMF: 
Expectation:
Variance:
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Examples:
•  # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌! ∼ Ber 𝑝  before seeing the first success.
𝑋 is called a Geometric random variable with parameter 𝑝. 
Notation: 𝑋 ∼ Geo(𝑝)
PMF: 𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#$𝑝

Expectation: 𝔼 𝑋 = $
%

Variance: Var 𝑋 = $#%
%!
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Examples:
•  # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let 𝑋 be the number of times you 
have to play the song from the start. What is 𝔼[𝑋]?
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Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I
– Bernoulli Random Variables, Part I
– Binomial Random Variables, Part I

– Geometric Random Variables
– Negative Binomial Random Variables
– Hypergeometric Random Variables
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Negative Binomial Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌! ∼ Ber 𝑝  before seeing the 𝑟&'  success.                              
Equivalently, 𝑋 = ∑!($) 𝑍!  where Z! ∼ Geo(𝑝).
 𝑋 is called a Negative Binomial random variable with parameters 𝑟, 𝑝. 

Notation: 𝑋 ∼ NegBin(𝑟, 𝑝)

PMF: 𝑃 𝑋 = 𝑘 = "#$
)#$ 	𝑝

) 1 − 𝑝 "#)

Expectation: 𝔼 𝑋 = )
%

Variance: Var 𝑋 = )($#%)
%!
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Hypergeometric Random Variables

A discrete random variable 𝑋 that models the number of successes in 𝑛 
draws (without replacement) from 𝑁 items that contain 𝐾 successes in 
total. 𝑋 is called a Hypergeometric RV with parameters 𝑁,𝐾, 𝑛. 

Notation: 𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

PMF: 𝑃 𝑋 = 𝑘 =
"
#

$%"
&%#
$
&

Expectation: 𝔼 𝑋 = 𝑛 ,
-

Variance: Var 𝑋 = 𝑛 ,(-#,)(-#.)
-!(-#$)
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Hope you enjoyed the zoo! 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)
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𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝! 1 − 𝑝 "#!

𝔼 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝$

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
%
"

&#%
'#"
&
'

𝔼 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁$(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝" 1 − 𝑝 '#"

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#(𝑝

𝔼 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝$
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I
– Bernoulli Random Variables, Part I
– Binomial Random Variables, Part I

– Geometric Random Variables
– Negative Binomial Random Variables
– Hypergeometric Random Variables
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Preview: Poisson

Model: # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in 𝑡 hours, is 3𝑡
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

   𝑋 =	# of cars passing through a light in 1 hour
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Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour. 
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𝔼[𝑋] = 3

1/𝑛

Assume:   Occurrence of events on disjoint time intervals is independent

What should 𝑝 be?
pollev.com/rachel312
A.  3/𝑛
B.  3𝑛 
C.  3
D.  3/60

Divide hour into 𝑛 intervals of length 1/𝑛Approximation idea:

This gives us 𝑛 independent intervals

Assume at most one car per interval

𝑝 =	probability car arrives in an interval



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 𝜆 for some given 𝜆 > 0 

1 hour

Discrete version: 𝑛 intervals, each of length 1/𝑛 . 
In each interval, there is a car with probability 𝑝 = 𝜆/𝑛 (assume ≤ 1 car can pass by)

Each interval is Bernoulli: 𝑋I = 1 if car in 𝑖th interval (0 otherwise). 𝑃(𝑋I = 1) = 𝜆	/𝑛

𝑋 = ∑!($. 𝑋!  

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑋~	Bin(𝑛, 𝑝)   𝑃 𝑋 = 𝑖 = .
!

/
.

!
1 − /

.

.#!

indeed! 𝔼 𝑋 = 𝑝𝑛 = 𝜆



Don’t like discretization
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We want now 𝑛 → ∞

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

!

1 −
𝜆
𝑛

.#!

=
𝑛!

𝑛 − 𝑖 ! 𝑛!
𝜆!

𝑖!
1 −

𝜆
𝑛

.

1 −
𝜆
𝑛

#!

	

𝑋 is binomial 𝑃 𝑋 = 𝑖 = !
"

#
!

"
1 − #

!

!$"

1/𝑛

→ 1 → 1→ 𝑒JK
→ 𝑃 𝑋 = 𝑖 = 𝑒56 ⋅ 6

6

7!
	



Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 𝜆 per 
unit time.  

• Let 𝑋 be the actual number of events happening in a given time 
unit.  Then 𝑋 is a Poisson r.v. with parameter 𝜆 (denoted 𝑋	~	Poi(𝜆)) 
and has distribution (PMF):
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𝑃 𝑋 = 𝑖 = 𝑒56 ⋅ 6
6

7!
	

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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This Photo by Unknown Author is licensed 
under CC BY-NC

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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R
!(7

8

𝑃 𝑋 = 𝑖 = R
!(7

8

𝑒#/ ⋅
𝜆!

𝑖!
= 𝑒#/ R

!(7

8
𝜆!

𝑖!

𝑃 𝑋 = 𝑖 = 𝑒56 ⋅ 6
6

7!
	

Fact (Taylor series expansion):

𝑒9 =R
!(7

8
𝑥!

𝑖!

= 𝑒#/𝑒/ = 1



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼 𝑋 = 𝜆

𝔼[𝑋] = R
!(7

8

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	R
!(7

8

𝑒#/ ⋅
𝜆!

𝑖!
⋅ 𝑖 = R

!($

8

𝑒#/ ⋅
𝜆!

(𝑖 − 1)!

= 𝜆	R
!($

8

𝑒#/ ⋅
𝜆!#$

(𝑖 − 1)!

= 𝜆	R
!(7

8

𝑒#/ ⋅
𝜆!

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒56 ⋅ 6
6

7!
	



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋L =;
IMN

O

𝑃 𝑋 = 𝑖 ⋅ 𝑖L =;
IMN

O

𝑒JK ⋅
𝜆I

𝑖!
⋅ 𝑖L =;

IMP

O

𝑒JK ⋅
𝜆I

(𝑖 − 1)!
𝑖

= 𝜆;
IMP

O

𝑒JK ⋅
𝜆IJP

(𝑖 − 1)!
⋅ 𝑖 = 𝜆;

QMN

O

𝑒JK ⋅
𝜆Q

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 ;
QMN

O

𝑒JK ⋅
𝜆Q

𝑗!
⋅ 𝑗 +;

QMN

O

𝑒JK ⋅
𝜆Q

𝑗!
= 𝜆L + 𝜆

= 𝔼[𝑋] = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼[𝑋:] − 𝔼[𝑋]:= 𝜆: + 𝜆 − 𝜆: = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒56 ⋅ 6
6

7!
	



Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I
– Bernoulli Random Variables, Part I
– Binomial Random Variables, Part I

– Geometric Random Variables
– Negative Binomial Random Variables
– Hypergeometric Random Variables
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Poisson Random Variables
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Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3 …,

 𝑃 𝑋 = 𝑖 = 𝑒#/ ⋅ /
'

!!
	

This Photo by Unknown Author is licensed 
under CC BY-NC

Poisson approximates binomial when:
    𝑛 is very large, 𝑝 is very small, and   𝜆 = 𝑛𝑝	is “moderate” 
      e.g. (𝑛	 > 	20	and 𝑝	 < 	0.05 ),  ( 𝑛	 > 	100	and 𝑝	 < 	0.1)

Formally, Binomial approaches Poisson in the limit as 
𝑛	 → 	∞	(equivalently, 𝑝	 → 	0) while holding 𝑛𝑝	 = 	 𝜆

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Probability Mass Function –  Convergence of Binomials
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𝜆 = 5 
𝑝 = R

S
 

𝑛 = 10,15,20
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0.3
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Bin(10,0.5)

Bin(15,1/3)

Bin(20,0.25)

Poi(5)

𝑎𝑠	𝑛 → ∞,   Binomial(n, 𝑝 = 	𝜆/𝑛) → 𝑝𝑜𝑖(𝜆)



From Binomial to Poisson
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𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝U 1 − 𝑝 SJU

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Poi(𝜆)

𝑃 𝑋 = 𝑘 = 𝑒#/ ⋅
𝜆"

𝑘!

𝐸 𝑋 = 𝜆

Var 𝑋 = 𝜆

𝑛 → ∞
𝑛𝑝 = 𝜆

𝑝 =
𝜆
𝑛
→ 0



Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length 𝑛	 = 	10!

• Probability of (independent) bit corruption is 𝑝	 = 	10"#
What is probability that message arrives uncorrupted?

Using 𝑋	~	Poi(𝜆	 = 	𝑛𝑝	 = 	10! ⋅ 10"#	= 	0.01)

Using 𝑌	~	Bin(10!, 10"#)
𝑃(𝑌 = 0) 	≈ 	0.990049829
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𝑃 𝑋 = 0 = 𝑒#/ ⋅
𝜆7

0!
= 𝑒#7.7$ ⋅

0.017

0!
≈ 0.990049834
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http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/


Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~Poi(𝜆$) and 𝑌~Poi(𝜆:)	such that 𝜆 = 𝜆$ + 𝜆:. 
Let 𝑍 = 𝑋 + 𝑌.    For all 𝑧 = 0,1,2,3 …,

 𝑃 𝑍 = 𝑧 = 𝑒#/ ⋅ /
(

=!
	

More generally, let 𝑋$~Poi 𝜆$ , ⋯ , 𝑋.~Poi(𝜆.) such that 𝜆 = Σ!𝜆!. 
Let 𝑍 = Σ!𝑋!  

 𝑃 𝑍 = 𝑧 = 𝑒#/ ⋅ /
(

=!
	



Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~Poi(𝜆$) and 𝑌~Poi(𝜆:)	such that 𝜆 = 𝜆$ + 𝜆:. 
Let 𝑍 = 𝑋 + 𝑌. For all 𝑧 = 0,1,2,3 …, 

 𝑃 𝑍 = 𝑧 = 𝑒#/ ⋅ /
(

=!
	

𝑃 𝑍 = 𝑧 =	?	
1. 	𝑃 𝑍 = 𝑧 = Σ>(7= 	𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗
2. 	𝑃 𝑍 = 𝑧 = Σ>(78 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗
3. 	𝑃 𝑍 = 𝑧 = Σ>(7= 𝑃 𝑌 = 𝑧 − 𝑗|𝑋 = 𝑗 	𝑃(𝑋 = 𝑗)
4.  𝑃 𝑍 = 𝑧 = Σ>(7= 𝑃 𝑌 = 𝑧 − 𝑗|𝑋 = 𝑗

pollev.com/rachel312
A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 



Proof
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𝑃 𝑍 = 𝑧 = Σ>(7= 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗

= Σ>(7= 𝑃 𝑋 = 𝑗)	𝑃(𝑌 = 𝑧 − 𝑗 = Σ>(7= 	 𝑒#/) ⋅
𝜆$
>

𝑗!
⋅ 𝑒#/! ⋅

𝜆:
=#>

𝑧 − 𝑗!

= 𝑒#/)#/! 	Σ>(7= 	 ⋅
1

𝑗! 𝑧 − 𝑗!
⋅ 𝜆$

>𝜆:
=#>

= 𝑒#/ 	Σ>(7= 𝑧!
𝑗! 𝑧 − 𝑗!

⋅ 𝜆$
>𝜆:

=#> 1
𝑧!

= 𝑒#/ ⋅ 𝜆$ + 𝜆: = ⋅ $
=!
= 𝑒#/ ⋅ 𝜆= ⋅ $

=!

Law of total probability

Independence

Binomial 
Theorem
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General principle: 
• Events happen at an average rate 

of 𝜆 per time unit 
• Number of events happening at a 

time unit 𝑋 is distributed 
according to Poi(𝜆) 

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3 …,

 𝑃 𝑋 = 𝑖 = 𝑒#/ ⋅ /
'

!!
	

• Poisson approximates Binomial when 𝑛 is large, 
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables


