CSE 312

Foundations of Computing II

Lecture 14: Expectation \& Variance of Continuous RVs Exponential and Normal Distributions

Announcements

- See EdStem posts related to next week's midterm on Nov 2 in class:
- Midterm General Information

10:00

- Midterm Review Next Week Tuesday at and 4:30pm.
- Practice Midterm Solution now available
- Review slide deck is now available.
- Seat assignment is out today!
- I talked with Prof. Brunelle who offered to finish CSE 332 a few minutes early next Wednesday.

Review - Continuous RVs

Probability Density Function (PDF) $f: \mathbb{R} \rightarrow \mathbb{R}$ st.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Cumulative Distribution Function (CDF).

$$
P(X \leq y)
$$

Density \neq Probability !

$$
\begin{aligned}
& \left.\mathbb{P}\left(X^{x} \bar{E}[y, b]\right]\right)=0 \int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& \left.f_{X}(y)>O=F \vec{X}(b)\right]-F_{X}(a)
\end{aligned}
$$

$$
F_{X}(y)=P(x \leq y)
$$

Review: Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

Example. T ~ Unif(0,1$)$

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
? & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Review: From Discrete to Continuous

$$
R[X \leq x]
$$

Agenda

- Expectation
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

$$
E[g(x)]=\int_{-\infty}^{+\infty} f_{x}(x) g(x) d x
$$

Definition. The expected value of a-continuous RV X is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x) \mathrm{d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} \frac{f_{X}(x)}{\underbrace{\prime \prime}(x)} \cdot \frac{(x-\mathbb{E}[X])^{2}}{} \mathrm{~d} x=\underline{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}}
$$

Expectation of a Continuous RV

Definition.

$\mathbb{E}[T]=\underbrace{\frac{1}{2} 1^{2}=\frac{1}{2}}_{\text {Area of triangle }}$

Agenda

- Expectation
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Uniform Density - Expectation

$$
\underline{f_{X}(x)}=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b)
\end{aligned}
$$

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \quad E\left[X^{2}\right]-(E[X])^{2} \quad f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right. \\
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot\left(x^{2}\right) \mathrm{d} x \\
& =\frac{1}{\underline{b-a}} \int_{(a)}^{b} \frac{x^{2}}{} \mathrm{~d} x=\frac{1}{b-a}\left(\left.\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}\right. \\
& =\frac{(b-a)\left(b^{2}+a b+q^{2}\right) b^{3}}{3(b-a)} \frac{b^{2} a^{2}+a b+a^{2}}{3}-\frac{2}{3}
\end{aligned}
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}}{b^{2}+a b+a^{2}} \\
& =\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12} \\
& =\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Uniform Distribution Summary

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection • Rate of radioactive decay
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

$$
\begin{equation*}
P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!} \tag{Discrete}
\end{equation*}
$$

How long to wait until next event? Exponential density!
Let's define it and then derive it!

Exponential Density - Warmup

$$
X \sim \operatorname{Poi}(\lambda) \Rightarrow P(X=i)=e^{-\lambda \frac{\lambda^{i}}{i!}}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is the distribution of $Z \#$ occurrences of event per t units of time?

The Exponential PDF/CDF

$$
X \sim \operatorname{Poi}(\lambda) \Rightarrow P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently) Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Le $Y \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $\underbrace{F_{Y}(t) \text { and } f_{Y}(t)}$
- Let $Z \sim \operatorname{Poi}(t \lambda)$ be the \# of events in the first t units of time, for $t \geq 0$.
- $P(Y>t)=P($ no event in the first t units $)=P(Z=0)=e^{-(t \lambda) \frac{(t \lambda)^{0}}{0!}=e^{-t \lambda}}$
- $F_{Y}(t)=P(Y \leq t)=1-P(Y>t)=1-e^{-t \lambda} \quad P[Y=t]=0$
- $f_{Y}(t)=\frac{d}{d t} F_{Y}(t)=\lambda e^{-t \lambda}$

$$
P\left[Y \approx\left[\begin{array}{l}
\in[/ 2+t, t+\varepsilon / 2] \\
=t
\end{array}\right]=\lambda e^{-t \lambda}\right.
$$

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
\begin{aligned}
& \text { CDF: For } y \geq 0 \\
& F_{X}(y)=1-e^{-\lambda y}
\end{aligned}
$$

Expectation

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x \\
& =\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x^{2} \mathrm{~d} x \\
& =\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda}
\end{aligned}
$$

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
P(X>t)=e^{-t \lambda} \\
\mathbb{E}[X]=\frac{1}{\lambda} \\
\operatorname{Var}(X)=\frac{1}{\lambda^{2}} \frac{1}{P}
\end{gathered}
$$

Somewhat complex calculation use integral by parts

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

$$
\frac{P(X>s+t)}{X>0.7} \frac{x>s)}{\frac{X-5}{1}}
$$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when $s=0$.

$$
P(X>t)=e^{-\lambda t}
$$

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.
Proof.

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{P(X>s+t \mid X>s)}{1 /} & =\frac{P(X>s+t\} \cap(X>s\})}{P(X>s)} \\
& =\frac{P(X>s+t)}{P(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda / s}}=\left(e^{-\lambda t}=P(X>t)\right.
\end{aligned} \\
& =P(A \cap B)
\end{aligned}
$$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s=0$
A

$F_{x}(y)$
$=p(x<y)$
$-1-e_{-\lambda y}$

$$
=p(x<y)
$$

-

Example

- Time it takestochecksomeone out at a grocery store is exponential with an expected value of 10 mins .

$$
\text { rate }=\frac{1}{10}
$$

- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& \text { T. } \operatorname{Exp}\left(\frac{1}{10}\right) \quad E[T]=\frac{1}{\lambda}=10 \quad \lambda \cdot e^{-x \cdot \lambda} \\
& \left.P(10 \leq T \leq 20)=\int_{10}^{\underline{20}} \frac{1}{10} e^{-}-\frac{x}{10}\right] \frac{1 x}{\epsilon} \\
& \underline{y}=\frac{x}{10} \operatorname{so} d y=\frac{d x}{10} \xrightarrow{P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}}
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& \text { so } \left.F_{T}(t)=\underline{1-e^{-\frac{t}{10}}} \quad \right\rvert\, / P(T \leq 20) \quad P(T \leq 10) . \\
& \begin{aligned}
P(10 \subseteq T) \leq 20) & =F_{T}(20)-F_{T}(\underline{10}) \\
& =1-e^{-\frac{20}{10}}-\left(1-e^{-\frac{10}{10}}\right)=e^{-1}-e^{-2}
\end{aligned}
\end{aligned}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof of expectation is easy because density curve is symmetric around μ,

$$
f_{X}(\mu-x)=f_{X}(\mu+x) \text {, but proof for variance requires integration of } e^{-x^{2} / 2}
$$

We will see next time why the normal distribution is (in some sense) the most important distribution.

The Normal Distribution

Aka a "Bell Curve" (imprecise name)

