CSE 312

Foundations of Computing II

Lecture 15: Normal Distribution \& Central Limit Theorem

Announcements

- Midterm on Wed
- Review session by Rachel Lin tomorrow at 10:00am at Gates 271
- Practice session by Zhiyang Lim tomorrow at 4:30pm at Gates 271
- Concentrated office hour this week Monday and Tuesday. See schedule on Ed.
- Seat assignment on Ed.

Review Continuous RVs 13

Probability Density Function (PDF).

Review Continuous RVs

Review Exponential Distribution

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameter $\mu \notin \mathbb{R}$ and $\sigma \geq 0$ has density

Carl Friedrich Gauss $x=7$

$$
e^{-\frac{(x-7)^{2}}{2}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \cdot \frac{1}{\sqrt{2 \pi}} e$

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
\begin{gathered}
x=\mu+\varepsilon \\
x^{\prime}=\mu \varepsilon \varepsilon \\
f(x)=f\left(x^{\prime}\right)
\end{gathered}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}[X]=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$
Proof of expectation is easy because density curve is symmetric around μ,

$$
f_{X}(\mu-x)=f_{X}(\mu+x) \text {, but proof for variance requires integration } f^{-x^{2} / 2}
$$

The Normal Distribution

A convenient fact:
Density curve is symmetric around μ
E.g., $\mu=0, y \geq 0, P(X \geq y)=P(X \leq-y)$
$\rightarrow P(X \leq y)=1-P(X>y)=1-P(x \leq-y)$

Closure of normal distribution - Under Shifting and Scaling

Fact. If $X \mathcal{N}\left(\underline{\mu}, \underline{\sigma^{2}}\right)$, then $Y=(a X+b) \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

$$
\begin{array}{ll}
\text { Proof. } & \mathbb{E}[Y]=a \mathbb{E}[X]+\underline{b}=a \mu+b \\
& \operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}
\end{array}
$$

Can show with algebra that the PDF of $Y=a X+b$ is still normal.

A very useful fact: $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

Closure of the normal -- under addition

Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ (both independent normal RV)

Note: The special thing is that the sum of normal RVs is still a normal RV.
The values of the expectation and variance are not surprising.

Why not surprising?

$$
\operatorname{Var}(X \neq Y)=\operatorname{Var}(X)
$$

- Linearity of expectation (always true)
- When X and Y are independent, $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

What about Non-standard normal?

If $X \sim \mathcal{N}\left(\underline{\mu}, \sigma^{2}\right)$, then $=\frac{x-\mu}{\sigma} \sim \mathcal{\mathcal { N }}(0,1)$
Therefore,

$$
\left.F_{X}(z)=P(X \leq z)=P\left(\frac{X-\mu}{\sigma}\right) \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)
$$

Example

$$
\begin{gathered}
\mu=\quad \sigma=2 \\
\text { Let } X \sim \mathcal{N}\left(\underline{0.4}, 4=2^{2}\right) .
\end{gathered}
$$

Example

$$
\sigma^{2}=16 \quad \sigma=4 \quad N \sim(\omega, 1)
$$

Let $X \sim \mathcal{N}(3,16)$

$$
\begin{aligned}
P(2<X<5) & \left.=P\left(\frac{2-3}{4}\right) X-\frac{5-3}{4}\right) \\
& =P\left(-\frac{1}{4}<\left(Z<\frac{1}{2}\right)\right. \\
& =\Phi\left(\frac{1}{2}\right)-\Phi\left(-\frac{1}{4}\right) \quad \begin{array}{l}
\text { Density curve is symmetric around } \mu=0 \\
\rightarrow P(X \leq-y)=P(X \geq y)=1-P(X \leq y)
\end{array} \\
& =\Phi\left(\frac{1}{2}\right)-\left(1-\Phi\left(\frac{1}{4}\right)\right) \approx 0.29017
\end{aligned}
$$

Example - How Many Standard Deviations Away?

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
P(|X-\mu|<k \sigma) & =P\left(\frac{|X-\mu|}{\sigma}<k\right)= \\
& =P\left(-k<\frac{X-\mu}{\sigma}<k\right)=\Phi(k)-\Phi(-k)
\end{aligned}
$$

$$
\begin{aligned}
\text { e.g. } k & =1: \quad 68 \% \\
k & =2: \quad 95 \% \\
k & =3: \quad 99 \%
\end{aligned}
$$

Halloween Brain Break

Normal Distribution

Paranormal Distribution

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian ...

e.g. Height distribution resembles Gaussian.
R.A.Fisher (1918) observed that the height is likely the outcome of the sum of many independent random parameters, i.e., can written as

$$
X=X_{1}+\cdots+X_{n}
$$

Sum of Independent RVs

X_{1}, \ldots, X_{n} i.i.d. with expectation μ and variance σ^{2}

Define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$$
\mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \mu
$$

$$
\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}
$$

Empirical observation: S_{n} looks like a normal RV as n grows.

Example: Sum of n i.i.d. $\operatorname{Exp}(1)$ random variables

(a) $n=1$

(e) $n=12$

(b) $n=2$

(f) $n=25$

(c) $n=3$

(d) $n=6$

CLT (Idea)

CLT (Idea)

Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}

Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}
$$

$\mathbb{E}\left[Y_{n}\right]=\frac{1}{\sigma \sqrt{n}}\left(\mathbb{E}\left[S_{n}\right]-n \mu\right)=\frac{1}{\sigma \sqrt{n}}(n \mu-n \mu)=0$
$\operatorname{Var}\left(Y_{n}\right)=\frac{1}{\sigma^{2} n}\left(\operatorname{Var}\left(S_{n}-n \mu\right)\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\sigma^{2} n}=\frac{\sigma^{2} n}{\sigma^{2} n}=1$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ for $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

CLT \rightarrow Normal Distribution EVERYWHERE

S\&P 500 Returns after Elections

Examples from:

https://galtonboard.com/probabilityexamplesinlife

