CSE 312 Foundations of Computing II

Lecture 15: Normal Distribution & Central Limit Theorem

Announcements

- Midterm on Wed
- Review session by Rachel Lin tomorrow at 10:00am at Gates
 271
- Practice session by Zhiyang Lim tomorrow at 4:30pm at Gates 271
- Concentrated office hour this week Monday and Tuesday. See schedule on Ed.
- Seat assignment on Ed.

Review Continuous RVs 13

 $P(X \in [a,b]) = \int_a^b f_X(x) \mathrm{d}x = F_X(b) - F_X(a)$

Review Exponential Distribution

Definition. An **exponential random variable** *X* with parameter $\lambda \ge 0$ is follows the exponential density $\int_{x} f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$

We write $X \sim \text{Exp}(\lambda)$ and say X that follows the exponential distribution.

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

Proof of expectation is easy because density curve is symmetric around μ , $f_X(\mu - x) = f_X(\mu + x)$, but proof for variance requires integration of $e^{-x^2/2}$

Closure of normal distribution – Under Shifting and Scaling

Fact. If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Proof.
$$\mathbb{E}[Y] = \underline{a} \mathbb{E}[X] + \underline{b} = \underline{a\mu} + \underline{b}$$

 $\operatorname{Var}(Y) = \underline{a^2} \operatorname{Var}(X) = \underline{a^2} \sigma^2$

Can show with algebra that the PDF of Y = aX + b is still normal.

A very useful fact: $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$

	Table of Standard Cumula $\forall yz 0$ $\forall yz 0$ $p(X \leq -y) =$		Nor -	XSU		2-21.4	3		1 5271	e	x2 2. X	c −χ
	$P(Z \le 1.09) \neq \Phi(1.09) \approx 0.8621$	0.00 0.0 0.5 0.1 0.539 0.2 0.579		Φ Tab 0.02 0.50798 0.54776 0.58706	le: $\mathbb{P}(Z \leq 0.03)$ 0.51197 0.55172 0.59095	z) when Z 0.04 0.51595 0.55567 0.59483	$\sim \mathcal{N}(0, 1)$ 0.05 0.51994 0.55962 0.59871	0.06 0.52392 0.56356 0.60257	$\begin{array}{c} 0.07 \\ 0.5279 \\ 0.56749 \\ 0.60642 \end{array}$	$\begin{array}{c} 0.08 \\ 0.53188 \\ 0.57142 \\ 0.61026 \end{array}$	0.09 0.53586 0.57535 0.61409	
(V	What is $P(Z \le -1.09)$?	$\begin{array}{c cccc} 0.3 & 0.617 \\ \hline 0.4 & 0.655 \\ \hline 0.5 & 0.691 \\ \hline 0.6 & 0.725 \\ \hline 0.7 & 0.758 \\ \hline 0.8 & 0.788 \\ \end{array}$	420.6591460.69497750.72907040.76115140.79103	0.62552 0.66276 0.69847 0.73237 0.76424 0.79389	0.6293 0.6664 0.70194 0.73565 0.7673 0.79673	0.63307 0.67003 0.7054 0.73891 0.77035 0.79955	0.63683 0.67364 0.70884 0.74215 0.77337 0.80234	$\begin{array}{c} 0.64058\\ 0.67724\\ 0.71226\\ 0.74537\\ 0.77637\\ 0.80511 \end{array}$	$\begin{array}{c} 0.64431 \\ 0.68082 \\ 0.71566 \\ 0.74857 \\ 0.77935 \\ 0.80785 \end{array}$	0.64803 0.68439 0.71904 0.75175 0.7823 0.81057	0.65173 0.68793 0.7224 0.7549 0.78524 0.81327	/
	Poll: pollev.com/rachel312	$\begin{array}{cccc} 0.9 & 0.815 \\ \hline 1.0 & 0.841 \\ \hline 1.1 & 0.864 \\ \hline 1.2 & 0.884 \\ \hline 1.3 & 0.903 \\ \hline 1.4 & 0.919 \end{array}$	340.84375330.8665930.8868620.9049240.92073	0.82121 0.84614 0.86864 0.88877 0.90658 0.9222	0.82381 0.84849 0.87076 0.89065 0.90824 0.92364	0.82639 0.85083 0.87286 0.89251 0.90988 0.92507	0.82894 0.85314 0.87493 0.89435 0.91149 0.92647	0.83147 0.85543 0.87698 0.89617 0.91309 0.92785		0.83646 0.85993 0.881 0.89973 0.91621 0.93056	0.83991 0.86214 0.88298 0.90147 0.91774 0.93189	e
	a. 0.1379 b. 0.8621	1 1	2 0.9463 43 0.95637 07 0.96485 28 0.97193 25 0.97778	0.93574 0.94738 0.95728 0.96562 0.97257 0.97831	0.93699 0.94845 0.95818 0.96638 0.9732 0.97882	0.93822 0.9495 0.95907 0.96712 0.97381 0.97932	0.93943 0.95053 0.95994 0.96784 0.97441 0.97982	0.94062 0.95154 0.9608 0.96856 0.975 0.9803	0.94179 0.95254 0.96164 0.96926 0.97558 0.98077	0.94295 0.95352 0.96246 0.96995 0.97615 0.98124	0.94408 0.95449 0.96327 0.97062 0.9767 0.98169	
	c. 0 d. Not able to compute	Z	28 0.98956	0.983 0.98679 0.98983 0.99224 0.99413	0.98341 0.98713 0.9901 0.99245 0.9943 0.99573	0.98382 0.98745 0.99036 0.99266 0.99446 0.99585	0.98422 0.98778 0.99061 0.99286 0.99461 0.99598	0.98461 0.98809 0.99086 0.99305 0.99477 0.99609	0.985 0.9884 0.99111 0.99324 0.99492 0.99621	0.98537 0.9887 0.99134 0.99343 0.99506 0.99632	0.98574 0.98899 0.99158 0.99361 0.9952 0.99643	
	Pensity, corve is symmetric around μ $P(X \le -y) = P(X \ge y) \neq 1$	$u = 0$ $(X \le y)$	/)	374 76 325 374	0.99683 0.99767 0.99831 0.99878	0.99693 0.99774 0.99836 0.99882	0.99702 0.99781 0.99841 0.99886	0.99711 0.99788 0.99846 0.99889	0.9972 0.99795 0.99851 0.99893	0.99728 0.99801 0.99856 0.99896	0.99736 0.99807 0.99861 0.999	12

Closure of the normal -- under addition

Fact. If $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ (both independent normal RV) then $\underline{aX} + \underline{bY} + c \sim \mathcal{N}(\alpha\mu_X + b\mu_Y + c(a^2\sigma_X^2 + b^2\sigma_Y^2))$

 $\chi + \chi$

Var(X + Y) = Var(X)

+Varly)

Note: The special thing is that **the sum of normal RVs is still a normal RV**. The values of the expectation and variance are **not** surprising. X Y are given by the product of the expectation and variance are **not** surprising.

Why not surprising?

- Linearity of expectation (always true)
- When X and Y are independent, $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

What about Non-standard normal?

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $\sqrt[a]{\sigma} \sim \mathcal{N}(0, 1)$
Therefore,
 $F_X(z) = P(X \le z) = P\left(\frac{X - \mu}{\sigma} \le \frac{z - \mu}{\sigma}\right) = \Phi\left(\frac{z - \mu}{\sigma}\right)$

Example

$$f = (b \quad 0 = 4 \quad N \land (w + 1))$$
Let $X \sim \mathcal{N}(3, 16)$

$$P(2 < X < 5) = P\left(\frac{2-3}{4}, \frac{X-3}{4}, \frac{5-3}{4}\right)$$

$$= P\left(-\frac{1}{4} < Z < \frac{1}{2}\right)$$

$$P(z < \frac{1}{2}) \quad P(z < \frac{1}{2})$$

$$P(z < \frac{1}{2}) \quad P(z < \frac{1}{2})$$

$$= \Phi\left(\frac{1}{2}\right) - \Phi\left(-\frac{1}{4}\right) \quad Density curve is symmetric around \mu = 0$$

$$\Rightarrow P(X \le -y) = P(X \ge y) = 1 - P(X \le y)$$

$$= \Phi\left(\frac{1}{2}\right) - \left(1 - \Phi\left(\frac{1}{4}\right)\right) \approx 0.29017$$

Example – How Many Standard Deviations Away?

 $P(|X - \mu| < k\sigma) = P\left(\frac{|X - \mu|}{\sigma} < k\right) =$ $= P\left(-k < \frac{X - \mu}{\sigma} < k\right) = \Phi(k) - \Phi(-k)$

e.g. k = 1: 68% k = 2: 95% k = 3: 99%

Let $X \sim \mathcal{N}(\mu, \sigma^2)$.

Halloween Brain Break

Normal Distribution

Paranormal Distribution

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian ...

e.g. Height distribution resembles Gaussian.

R.A.Fisher (1918) observed that the height is likely the outcome of the sum of many independent random parameters, i.e., can written as

 $X = X_1 + \dots + X_n$

Sum of Independent RVs

i.i.d. = independent and identically distributed

 X_1, \ldots, X_n i.i.d. with expectation μ and variance σ^2

Define

$$S_n = X_1 + \dots + X_n$$

$$\mathbb{E}[S_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n\mu$$
$$Var(S_n) = Var(X_1) + \dots + Var(X_n) = n\sigma^2$$

Empirical observation: *S_n* looks like a normal RV as *n* grows.

Example: Sum of n i.i.d. Exp(1) random variables

CLT (Idea)

Central Limit Theorem

 X_1, \ldots, X_n i.i.d., each with expectation μ and variance σ^2

Define $S_n = X_1 + \dots + X_n$ and

$$Y_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

$$\mathbb{E}[Y_n] = \frac{1}{\sigma\sqrt{n}} (\mathbb{E}[S_n] - n\mu) = \frac{1}{\sigma\sqrt{n}} (n\mu - n\mu) = \mathbf{0}$$

$$\operatorname{Var}(Y_n) = \frac{1}{\sigma^2 n} \left(\operatorname{Var}(S_n - n\mu) \right) = \frac{\operatorname{Var}(S_n)}{\sigma^2 n} = \frac{\sigma^2 n}{\sigma^2 n} = 1$$

Central Limit Theorem

$$Y_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

Theorem. (Central Limit Theorem) The CDF of Y_n converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$\lim_{n \to \infty} P(Y_n \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-x^2/2} \mathrm{d}x$$

Central Limit Theorem

$$X_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

Theorem. (Central Limit Theorem) The CDF of Y_n converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$\lim_{n \to \infty} P(Y_n \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-x^2/2} \mathrm{d}x$$

Also stated as:

- $\lim_{n \to \infty} Y_n \to \mathcal{N}(0,1)$
- $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i \to \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$ for $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \operatorname{Var}(X_i)$

$\textbf{CLT} \rightarrow \textbf{Normal Distribution EVERYWHERE}$

S&P 500 Returns after Elections

Examples from: https://galtonboard.com/probabilityexamplesinlife