CSE 312

Foundations of Computing II

Lecture 16: CLT \& Polling

Review The Normal Distribution

Aka a "Bell Curve" (imprecise name)

A convenient fact: Symmetry around μ E.g., for standard normal

$$
P(X \leq-y)=1-P(x \leq y)
$$

Review Closure of normal distribution - Under Shifting and Scaling
Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=\underline{a} X+\underline{b} \sim \mathcal{N}\left(a \mu+b, \underline{a^{2} \sigma^{2}}\right)$

Review How Many Standard Deviations Away?

Review

Table of $\Phi(\mathbf{z})$ CDF of Standard Normal Distribution
Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	5
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.7088	0.7122	0.71566	0.71904	. 7224
0.6	0.72575	0.72907	0.73237	0.7356	0.73891	0.7421	0.7453	0.74857	0.751	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84	0.84375	, 84614	0.8484	0.85083	0.8531	0.85543	0.8576	0.859	. 86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.9685	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.9939	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.9	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.09865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

Sum of independent normal is still normal

Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ (both independent normal RV) then $\mathrm{a} X+b Y+c \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$

Agenda

- Central Limit Theorem (CLT)
- Polling

Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian ...

e.g. Height distribution resembles Gaussian.
R.A.Fisher (1918) observed that the height is likely the outcome of the sum of many independent random parameters, i.e., can written as

$$
X=X_{1}+\cdots+X_{n}
$$

Sum of Independent RVs

i.i.d. = independent and identically distributed
X_{1}, \ldots, X Xi.i.d. with expectation μ and variance σ^{2}
Define

$$
S_{n}=X_{2}+\cdots+X_{n}
$$

$\mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=\underline{n \mu}$
$\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2} \rightarrow \quad \underline{\sqrt{n} \cdot \sigma}$

Empirical observation: S_{n} looks like a normal RV as n grows.

Example: Sum of n i.i.d. Exp(1) random variables

(a) $n=1$

(e) $n=12$
-

(b) $n=2$

(f) $n=25$

CLT (Idea)

CLT (Idea)

Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}
$\longrightarrow N\left(n \mu, n \sigma^{2}\right)$
Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
Y_{n}=\frac{S_{n}-n \mu}{(\sigma \sqrt{n})} \rightarrow N(0,1)
$$

$\mathbb{E}\left[Y_{n}\right]=\frac{1}{\sigma \sqrt{n}}\left(\mathbb{E}\left[S_{n}\right]-n \mu\right)=\frac{1}{\sigma \sqrt{n}}(n \mu-n \mu)=0$
$\operatorname{Var}\left(Y_{n}\right)=\frac{1}{\sigma^{2} n}\left(\operatorname{Var}\left(S_{n}-n \mu\right)\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\sigma^{2} n}=\frac{\sigma^{2} n}{\sigma^{2} n}=1$

Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}

Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
z_{n}=\left(\frac{S_{n}}{n}\right)
$$

$\mathbb{E}\left[Z_{n}\right]=\underline{\underline{n \mu}}=\mu$
$\operatorname{Var}\left(Z_{n}\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\mathrm{n}^{2}}=\frac{\sigma^{2} n}{\underline{n^{2}}}=\frac{\sigma^{2}}{n} \downarrow$

Central Limit Theorem

$$
N(0,1) \propto Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x=\Phi(y)
$$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\left.\lim _{n \rightarrow \infty} P\left(Y_{n}\right) \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \rightarrow X_{i} \sim N\left(\mu, \sigma^{2}\right)$
- $\underline{\lim }_{n \rightarrow \infty} \frac{\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right.}{z_{n}} \rightarrow \mathcal{N}\left(\mu_{,} \frac{\sigma^{2}}{n}\right)$ for $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

CLT \rightarrow Normal Distribution EVERYWHERE

S\&P 500 Returns after Elections

Examples from:

https://galtonboard.com/probabilityexamplesinlife

Agenda

- Central Limit Theorem (CLT) Review
- Polling

Magic Mushrooms

In Fall 2020, Oregonians voted on whether to legalize the therapeutic use of "magic mushirooms".

Poll to determine the fraction p of the population expected to vote in favor.

- Call up a random sample of n people to ask their opinion $P=E\left[\bar{P}_{1}\right]$
- Report the empirical fraction

1. Is this agood estimate?
traek 40 w to choose n ?

- in populetió

Polling Accuracy

Often see claims that say

$$
\begin{aligned}
& \text { "Our poll found } 80 \% \text { support. This poll is accurate to within } \\
& 5 \% \text { with } 98 \% \text { probability** } \\
& \bar{p} \in[p[\bar{P} \in[p 5 \%, \quad p+5 \%]] \geqslant 98 \%
\end{aligned}
$$

Will unpack what this and how they sample enough people to know this is true.

* When it is 95% this is sometimes written as " 19 times out of 20 "

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.
Problem: We don't know p, want to estimate it

Polling Procedure

for $i=1, \ldots, n$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
\underline{1}, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of p :

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p
Polling Procedure
for $i=1, \ldots, n$:

What type of rv. is X_{i} ?
Poll: pollev.com/rachel312

	Type	$\mathbb{E}\left[X_{i}\right]$	$\operatorname{Var}\left(X_{i}\right)$
a. Bernoulli	p	$p(1-p)$	
b.	Bernoulli	p	p^{2}
c. Geometric	p	$\frac{1-p}{p^{2}}$	
d.	Binomial	$n p$	$n p(1-p)$

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1 \\
0
\end{array}\right) \quad \begin{array}{r}
\text { voting in favor } \\
\text { otherwise }
\end{array}
$$

Report our estimate of p :
$X=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Random Variables

What type of r.v. is X_{i} ?

	Type	$\mathbb{E}\left[X_{i}\right]$	$\operatorname{Var}\left(X_{i}\right)$
a.	Bernoulli	p	$p(1-p)$
b.	Bernoulli	p	p^{2}
C.	Geometric	p	$\frac{1-p}{p^{2}}$
d.	Binomial	$\mathrm{n} p$	$n p(1-p)$

What about $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$?

	Poll: pollev.com/rachel312	
	$\mathbb{E}[\bar{X}]$	$\operatorname{Var}(\bar{X})$
a.	$n p$	$n p(1-p)$
b.	p	$p(1-p)$
c.	p	$p(1-p) / n$
d.	p / n	$p(1-p) / n$

Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

Get good estimate if \bar{X} lands in this region

Want $P(|\bar{X}-p|>0.05) \leq 0.02$

Central Limit Theorem

pollev.com/rachel312
Poll: In the limit \bar{X} is...?
a. $\quad \mathcal{N}(0,1)$
b. $\mathcal{N}(p, p(1-p))$
c. $\quad \mathcal{N}(p, p(1-p) / n)$
d. I don't know

As $n \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathcal{N}(0,1)
$$

As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Roadmap: Bounding Error

Want $P(|\bar{X}-p|>0.05) \leq 0.02$

Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

1. Define probability of a "bad event" $P(|\bar{X}-p|>0.05) \leq 0.02$
2. Apply CLT
3. Convert to a standard normal
4. Solve for n

Following the Road Map

1. Want $P(|\bar{X}-p|>0.05) \leq 0.02$

2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the $\operatorname{CLT} Z \rightarrow \mathcal{N}(0,1)$

$$
P(|\bar{X}-p|>0.05)=P(|Z| \cdot \sigma>0.05)
$$

$$
\frac{1}{\sqrt{p(1-p)}} \text { is always } \geq 2
$$

$$
\begin{aligned}
& =P(|Z|>0.05 / \sigma)=P(|Z|>0.05 \\
& \leq P(|Z|>0.1 \sqrt{n})
\end{aligned}
$$

Following the Road Map

1. Want $P(|\bar{X}-p|>0.05) \leq 0.02$

2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$
$P(|\bar{X}-p|>0.05)=P(|Z| \cdot \sigma>0.05)$ $\frac{1}{\sqrt{p(1-p)}}$ is always ≥ 2

$$
\left.\frac{-P(|7|>005 / \sigma)-P(|7|}{\frac{-0 \text { ose } n \text { so that this is at most } 0.02}{\leq P(|Z|>0.1 \sqrt{n})}}>0.05 \xrightarrow{\sqrt{p(1-p)}}\right)
$$

4. Solve for n

We want $P(|Z|>0.1 \sqrt{n}) \leq 0.02$ where $Z \rightarrow \mathcal{N}(0,1)$

- If we actually had $Z \sim \mathcal{N}(0,1)$ then enough to show that $P(Z>0.1 \sqrt{n}) \leq 0.01$ since $\mathcal{N}(0,1)$ is symmetric about 0
- Now $P(Z>z)=1-\Phi(z)$ where $\Phi(z)$ is the CDF of the Standard Normal Distribution
- So, want to choose n so that $0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

Table of $\Phi(\mathbf{z})$ CDF of

 Standard Normal DistributionChoose n so
$0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

From table $z=2.33$ works

Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.9807	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.9867	9.981	0.9874	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.9	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.900	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.9958	0.9959	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

4. Solve for n

Choose n so
$0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

From table $z=2.33$ works

- So we can choose $0.1 \sqrt{n} \geq 2.33$ or $\sqrt{n} \geq 23.3$
- Then $n \geq 543 \geq(23.3)^{2}$ would be good enough ... if we had $Z \sim \mathcal{N}(0,1)$
- We only have $Z \rightarrow \mathcal{N}(0,1)$ so there is some loss due to approximation error.
- Maybe instead consider $z=3.0$ with $\Phi(z) \geq 0.99865$ and $n \geq 30^{2}=900$ to cover any loss.

Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice :

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized mode!!

