
CSE 312

Foundations of Computing II
Lecture 17: Polling
Continuity Correction & Distinct Elements
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Review: Central Limit Theorem
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Theorem. (Central Limit Theorem) The CDF of 𝑌! converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
!→#

𝑃 𝑌! ≤ 𝑦 =
1
2𝜋

1
$#

%
𝑒$&!/(d𝑥

𝑌! =
𝑋) +⋯+ 𝑋! − 𝑛𝜇

𝜎 𝑛

Also stated as:
•  lim

!→#
𝑌! → 𝒩(0,1)

•  lim
!→#

)
!
∑*+)
! 𝑋* → 𝒩 𝜇, ,

!

!
 for 𝜇 = 𝔼[𝑋*] and 𝜎( = Var 𝑋*

Application:  Use Normal Distribution to Approximate 𝑌!
No need to understand 𝑌! !!



Magic Mushrooms

In Fall 2020, Oregonians voted on whether to legalize the 
therapeutic use of “magic mushrooms”.

Poll to determine the fraction 𝑝	of the population expected to vote 
in favor.
• Call up a random sample of 𝑛 people to ask their opinion
• Report the empirical fraction

Questions
• Is this a good estimate?
• How to choose 𝑛?
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Polling Accuracy

Often see claims that say

 “Our poll found 80% support. This poll is accurate to within    
5% with 98% probability*”

Will unpack what this and how they sample enough people to 
know this is true.
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* When it is 95% this is sometimes written as “19 times out of 20”



Formalizing Polls

5

Polling Procedure 
for 𝑖 = 1, … , 𝑛	:
    1. Pick uniformly random person to call (prob: 1/𝑁)
    2. Ask them how they will vote

𝑋* = I1, 	 voting	in	favor
0, 	 otherwise

Report our estimate of 𝑝:	 V𝑋 = )
!
∑*+)! 𝑋*

Population size 𝑁, true fraction of voting in favor 𝑝, sample size 𝑛.
 Problem: We don’t know 𝑝, want to estimate it



Formalizing Polls
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Polling Procedure 
for 𝑖 = 1, … , 𝑛	:
    1. Pick uniformly random person to call (prob: 1/𝑁)
    2. Ask them how they will vote

𝑋* = I1, 	 voting	in	favor
0, 	 otherwise

Report our estimate of 𝑝:	 V𝑋 = )
!
∑*+)! 𝑋*

Population size 𝑁, true fraction of 
voting in favor 𝑝, sample size 𝑛.
 Problem: We don’t know 𝑝

Poll:  pollev.com/rachel312 
Type	 𝔼[𝑋!]	 Var(𝑋!)

a.  Bernoulli     𝑝	 𝑝(1 − 𝑝)
b.  Bernoulli        𝑝	 𝑝"

c.  Geometric     𝑝	 #$%
%!

d.  Binomial        n𝑝	 𝑛𝑝(1 − 𝑝)

What type of r.v. is 𝑋5?



Random Variables

What type of r.v. is 𝑋5?

What about  #𝑋 = 6
!
∑576! 𝑋5?
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Type	 𝔼[𝑋!]	 Var(𝑋!)
a.  Bernoulli     𝑝	 𝑝(1 − 𝑝)
b.  Bernoulli        𝑝	 𝑝"

c.  Geometric     𝑝	 #$%
%!

d.  Binomial        n𝑝	 𝑛𝑝(1 − 𝑝)

Poll:  pollev.com/rachel312
       𝔼[ 8𝑋]	 Var( 8𝑋)
a.  𝑛𝑝	 𝑛𝑝(1 − 𝑝)
b.  𝑝	 𝑝(1 − 𝑝)
c.  𝑝	 𝑝 1 − 𝑝 /𝑛
d.  𝑝/𝑛	 𝑝(1 − 𝑝)/𝑛



Central Limit Theorem

With i.i.d random variables 𝑋!, 𝑋", … , 𝑋# where
𝔼[𝑋$] = 𝜇	and Var 𝑋$ = 𝜎"

As 𝑛 → ∞,

𝑌# =
𝑋! + 𝑋" +⋯𝑋# 	− 𝑛𝜇

𝜎 𝑛
→ 𝒩(0, 1)

As 𝑛 → ∞,

𝑋 =
1
𝑛
;
$%!

#

𝑋$ → 𝒩 𝜇,
𝜎"

𝑛
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Poll: In the limit 𝑋 is…?
a.  𝒩(0, 1)
b.  𝒩 𝑝, 𝑝(1 − 𝑝)
c.  𝒩 𝑝, 𝑝(1 − 𝑝)/𝑛 	
d.  I don’t know

pollev.com/rachel312



Roadmap: Bounding Error

Goal: Find the value of 𝑛 such that 98% of the time, the 
estimate #𝑋 is within 5% of the true 𝑝 
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10 𝑝 𝑝 + 0.05𝑝 − 0.05

Get good estimate if 𝑋 lands in this region

𝑋

Want 𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02

0.05 0.05



Roadmap: Bounding Error
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10 𝑝 𝑝 + 0.05𝑝 − 0.05𝑋

Want 𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02



Roadmap: Bounding Error

Goal: Find the value of 𝑛 such that 98% of the time, the 
estimate #𝑋 is within 5% of the true 𝑝 

1. Define probability of a “bad event” 
2. Apply CLT
3. Convert to a standard normal
4. Solve for 𝑛
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𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02



Following the Road Map
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1. Want 𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02    

2. By CLT  𝑋 → 𝒩 𝜇, 𝜎$ 	 where 𝜇 = 𝑝 and 𝜎$ = 𝑝(1 − 𝑝)/𝑛

3. Define 𝑍 = %&'
(

= %&)
(
.   Then, by the CLT 𝑍 → 𝒩 0, 1

𝑃 𝑋 − 𝑝 > 0.05 = 𝑃 𝑍 ⋅ 𝜎 > 0.05

= 𝑃 𝑍 > 0.05/𝜎 = 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
)

≤ 𝑃( 𝑍 > 0.1 𝑛)

𝟏
𝒑 𝟏$𝒑

 is always ≥ 𝟐 

𝑝(1 − 𝑝)



Following the Road Map
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1. Want 𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02    

2. By CLT  𝑋 → 𝒩 𝜇, 𝜎$ 	 where 𝜇 = 𝑝 and 𝜎$ = 𝑝(1 − 𝑝)/𝑛

3. Define 𝑍 = %&'
(

= %&)
(
.   Then, by the CLT 𝑍 → 𝒩 0, 1

𝑃 𝑋 − 𝑝 > 0.05 = 𝑃 𝑍 ⋅ 𝜎 > 0.05

= 𝑃 𝑍 > 0.05/𝜎 = 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
)

≤ 𝑃( 𝑍 > 0.1 𝑛)

𝟏
𝒑 𝟏$𝒑

 is always ≥ 𝟐 

Want to choose 𝑛 so that this is at most 0.02

𝑝(1 − 𝑝)



4. Solve for 𝑛

We want 𝑃 𝑍 > 0.1 𝑛 ≤ 0.02  where  𝑍 → 𝒩 0, 1

• If we actually had 𝑍 ∼ 𝒩 0, 1  then enough to show that                     
𝑃 𝑍 > 0.1 𝑛 ≤ 0.01 since 𝒩 0, 1  is symmetric about 0

• Now 𝑃 𝑍 > 𝑧 = 1 − Φ(𝑧) where Φ(𝑧) is the CDF of the Standard 
          Normal Distribution

• So, want to choose 𝑛 so that 0.1 𝑛 ≥ 𝑧	where Φ 𝑧 ≥ 0.99
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Table of 𝚽(𝐳) CDF of 
Standard Normal 
Distribution
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Choose 𝑛 so 
0.1 𝑛 ≥ 𝑧 where
 Φ 𝑧 ≥ 0.99

From table 𝑧 = 2.33 works



From table 𝑧 = 2.33 works

4. Solve for 𝑛

• So we can choose 0.1 𝑛 ≥ 2.33                        
or  𝑛 ≥ 23.3	

• Then 𝑛 ≥ 543 ≥ 23.3 $ would be 
good enough … if we had 𝑍 ∼ 𝒩 0, 1

• We only have 𝑍 → 𝒩 0, 1  so there is 
some loss due to approximation error.

• Maybe instead consider 𝑧 = 3.0 with  
Φ 𝑧 ≥ 0.99865  and  𝑛 ≥ 30$ = 900 
to cover any loss.
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Choose 𝑛 so 
0.1 𝑛 ≥ 𝑧 where
 Φ 𝑧 ≥ 0.99



Idealized Polling

So far, we have been discussing “idealized polling”. Real life is 
normally not so nice L 

Assumed we can sample people uniformly at random, not really 
possible in practice
– Not everyone responds
– Response rates might differ in different groups
– Will people respond truthfully?

Makes polling in real life much more complex than this idealized 
model!

17



Brain Break 

• 1,600 × 884
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fthepointsguy.com%2Fguide%2Fbest-places-to-see-fall-foliage%2F&psig=AOvVaw1lxwdvzm8Rw3BFxDSuyDYj&ust=1699209021730000&source=images&cd=vfe&opi=89978449&ved=0CA8QjRxqFwoTCIiKl4_9qoIDFQAAAAAdAAAAABAE


Agenda

• Continuity correction
• Application: Counting distinct elements

19



Example – 𝑌! is binomial  

We flip 𝑛 independent coins, heads with probability 𝑝 = 0.75. 

20

𝑋 = # heads 

ℙ(𝑋 ≤ 0.7𝑛)

𝑛 exact 𝒩 𝝁, 𝝈𝟐  
approx

10 0.4744072 0.357500327

20 0.38282735 0.302788308

50 0.25191886 0.207108089

100 0.14954105 0.124106539

200 0.06247223 0.051235217

1000 0.00019359 0.000130365

𝜇 = 𝔼 𝑋 = 0.75𝑛 𝜎" = Var 𝑋 = 𝑝 1 − 𝑝 𝑛 = 0.1875𝑛

We understand binomial, so we can see how well approximation works 



Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

21

Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

01

≈ 	0.2448

Approx.

ℙ 20 ≤ 𝑋 ≤ 21 = Φ
20 − 20

10
≤
𝑋 − 20
10

≤
21 − 20

10

≈ Φ 0 ≤
𝑋 − 20
10

≤ 0.32

= Φ 0.32 − Φ 0 ≈ 0.1241
😢

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎" = Var 𝑋 = 0.25𝑛 = 10



Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?

22

Exact. ℙ 𝑋 = 20 =
40
20

1
2

01

≈ 0.1254

Approx. ℙ 20 ≤ 𝑋 ≤ 20 = 0 😢



Solution – Continuity Correction 

Probability estimate for 𝑖:  Probability for all 𝑥 that round to 𝑖!
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To estimate probability that discrete RV lands in (integer) interval {𝑎, … , 𝑏}, compute 
probability continuous approximation lands in interval [𝑎 − #

"
, 𝑏 + #

"
]



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

24

Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

01

≈ 	0.2448

Approx.

ℙ 19.5 ≤ 𝑋 ≤ 21.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
21.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.47

= Φ 0.47 − Φ −0.16 ≈ 0.2452
👍

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎" = Var 𝑋 = 0.25𝑛 = 10



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

25

Exact. ℙ 𝑋 = 20 =
40
20

1
2

01

≈ 0.1254

Approx. ℙ 19.5 ≤ 𝑋 ≤ 20.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
20.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.16

= Φ 0.16 − Φ −0.16 ≈ 0.1272



Agenda

• Continuity correction
• Application: Counting distinct elements
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Data mining – Stream Model

• In many data mining situations, data often not known ahead of time.
– Examples:   Google queries,  Twitter or Facebook status updates,  YouTube video 

views

• Think of the data as an infinite stream
• Input elements (e.g. Google queries) enter/arrive one at a time.

– We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Stream Model – Problem Setup

Input: sequence (aka.  “stream”) of 𝑁 elements	𝑥6, 𝑥M, … , 𝑥N 
from a known universe 𝑈	(e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to 
right pass, where:
– Elements processed in real time
– Can’t store the full data ⇒ use minimal amount of storage while 

maintaining working “summary”



What can we compute?

Some functions are easy:
– Min
– Max 
– Sum
– Average

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4



Today: Counting distinct elements

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4

Application

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

• IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain 
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a 
certain term/item
– Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
• Naïve solution: As the data stream comes in, store all distinct IDs 

in a hash table. 
• Space requirement: Ω(𝑚)

YouTube Scenario: 𝑚 is huge!

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
𝑁	 = # of IDs in the stream = 11,    𝑚	 = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
𝑁	 = # of IDs in the stream = 11,    𝑚	 = # of distinct IDs in the stream = 5  



0 1

0 1
x

0 1
x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

If 𝑌2, ⋯ , 𝑌3~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

What is some intuition for this?

“Evenly spread out”

Detour – I.I.D. Uniforms



Detour – I.I.D. Uniforms
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If 𝑌2, ⋯ , 𝑌3~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

𝑚 = 1
0 1

x

𝑌#  has expected value 1/2  
 … but probably isn’t very close to the middle

𝑚 = 2
0 1

x x

… and 𝑌" is more likely to be in the bigger gap



Detour – Min of I.I.D. Uniforms
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If 𝑌2, ⋯ , 𝑌3~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

e.g., what is 𝔼[min 𝑌2, ⋯ , 𝑌3 ]? 
 

CDF: Observe that min 𝑌2, ⋯ , 𝑌3 ≥ 𝑦 if and only if 𝑌2 ≥ 𝑦,… , 𝑌3 ≥ 𝑦

𝑃 min 𝑌2, ⋯ , 𝑌3 ≥ 𝑦 = 𝑃(𝑌2 ≥ 𝑦,… , 𝑌3 ≥ 𝑦)

(Similar to Section 6)

= 𝑃 𝑌2 ≥ 𝑦 ⋯𝑃(𝑌3 ≥ 𝑦) (Independence)

= 1 − 𝑦 3

𝑦 ∈ [0,1]

⇒ 𝑃 min 𝑌2, ⋯ , 𝑌3 ≤ 𝑦 = 1 − 1 − 𝑦 3



Detour – Min of I.I.D. Uniforms
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Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = 1
1

4
𝑃 𝑌 ≥ 𝑦 d𝑦

Proof   (Not covered)

= T
-./.0.1

𝑓2 𝑥 	= W
-

1
W
/

1
𝑓2 𝑥 	d𝑥	d𝑦 = W

-

1
𝑃 𝑌 ≥ 𝑦 	d𝑦

𝔼 𝑌 = W
-

1
𝑥 ⋅ 𝑓2 𝑥 	d𝑥 = W

-

1
W
-

0
1 d𝑦 ⋅ 𝑓2 𝑥 	d𝑥 = W

-

1
W
-

0
𝑓2 𝑥 	d𝑦	d𝑥



Detour – Min of I.I.D. Uniforms
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𝑌#, ⋯ , 𝑌3~	Unif 0,1  (i.i.d.) 

𝑌 = min 𝑌#, ⋯ , 𝑌3

Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = 1
1

4
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = 9
b

c
𝑃 𝑌 ≥ 𝑦 d𝑦 = 9

b

6
1 − 𝑦 dd𝑦

= @−
1

𝑚 + 1 1 − 𝑦 de6

b

6

= 0 − −
1

𝑚 + 1	 =
1

𝑚 + 1



Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

𝔼[min 𝑌2, ⋯ , 𝑌0 ] =
2

052
= 2

6

𝔼[min 𝑌2 ] =
2

252
= 2

$

𝔼[min 𝑌2, 𝑌$ ] =
2

$52
= 2

7

In general,  𝔼[min 𝑌2, ⋯ , 𝑌3 ] = 2
352

If 𝑌2, ⋯ , 𝑌3~	Unif 0,1  (iid) where do we expect the points to end up?
 



Distinct Elements – Hashing into [𝟎, 𝟏]

40

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

𝑥2 = 5   𝑥$ = 2   𝑥7 = 27	   𝑥0 = 35	   𝑥6 = 4

ℎ 5 ℎ 2 ℎ 27 ℎ 35 ℎ 4

5 distinct elements 

→ 5 i.i.d. RVs ℎ 𝑥2 , … , ℎ 𝑥6 	~	Unif 0,1

→ 𝔼 min ℎ 𝑥2 , … , ℎ 𝑥6 = 2
652

= 2
8



Distinct Elements – Hashing into [𝟎, 𝟏]

41

𝑥2 = 5   𝑥$ = 2   𝑥7 = 27	   𝑥0 = 5	   𝑥6 = 4

ℎ 5 ℎ 2 ℎ 27 h 5 ℎ 4

4 distinct elements 

⇒ 4 i.i.d. RVs ℎ 𝑥2 , ℎ 𝑥$ , ℎ 𝑥7 , ℎ 𝑥6 	~	Unif 0,1  and ℎ 𝑥2 = ℎ 𝑥0  

⇒ 𝔼 min ℎ 𝑥2 , … , ℎ 𝑥6 = 𝔼 min ℎ 𝑥2 , ℎ 𝑥$ , ℎ 𝑥7 , ℎ 𝑥6 = 2
052

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent



Distinct Elements – Hashing into [𝟎, 𝟏]

42

𝑥6, 𝑥M, … , 𝑥N contains 𝑚 distinct elements

𝔼 min ℎ(𝑥2), … , ℎ(𝑥9) =
1

𝑚 + 1

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

ℎ(𝑥6), ℎ 𝑥M , … , ℎ(𝑥N) contains 𝑚 i.i.d. rvs ~	Unif 0,1  
and 𝑁 − 𝑚 repeats

𝑚 =
1

𝔼 min ℎ(𝑥2), … , ℎ(𝑥9)
− 1



The MinHash Algorithm – Idea

1. Compute val = min{ℎ(𝑥6), … , ℎ(𝑥N)}
2. Assume that val ≈ 𝔼 min ℎ(𝑥6), … , ℎ(𝑥N)

3. Output round 6
fgh
− 1

43

𝑚 =
1

𝔼 min ℎ(𝑥2), … , ℎ(𝑥9)
− 1



The MinHash Algorithm – Implementation
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Memory cost = just remember val 
(with sufficient precision)

Algorithm MinHash(𝑥6, 𝑥M, … , 𝑥N)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥5)}

return round 6
fgh
− 1



MinHash Example

Stream:    13,      25,       19,     25,       19,      19

Hashes: 0.51,  0.26,  0.79,  0.26,  0.79,  0.79

Poll:  pollev.com/rachel312
a.  1
b.  3
c.  5
d.  No	idea

What does 
MinHash return?



MinHash Example II

Stream:    11,     34,     89,     11,      89,     23

Hashes:  0.5,  0.21,  0.94,   0.5,  0.94,   0.1

Output is 6
b.6
− 1 = 9 Clearly, not a very good answer!

Not unlikely: 𝑃 ℎ 𝑥 < 0.1 = 0.1 



The MinHash Algorithm – Problem

47

Algorithm MinHash(𝑥6, 𝑥M, … , 𝑥N)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥5)}

return round 6
fgh
− 1

val = min{ℎ(𝑥!), … , ℎ(𝑥")}

But, val is not 𝔼[val]!     
How far is val from 𝔼[val]? 

𝔼[val] =
1

𝑚 + 1

Var(val) ≈
1

𝑚 + 1 $



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use 𝑘 independent hash functions ℎ2, ℎ$, ⋯ ℎL  

Algorithm MinHash(𝑥2, 𝑥$, … , 𝑥9)

val2, … , valM ← ∞
for 𝑖 = 1 to 𝑁 do

 val2 ← min{val2, ℎ2(𝑥N)} , … , valM ← min{valL , ℎL(𝑥N)}

val ←
1
𝑘
u
NO2

L

valP

return round 2
QRS
− 1

Var val =
1
𝑘

1
𝑚 + 1 M



MinHash and Estimating # of Distinct Elements in Practice

• MinHash in practice:
– One also stores the element that has the minimum hash value for 

each of the 𝑘 hash functions
• Then, just given separate MinHashes for sets 𝐴 and 𝐵, can also estimate

–what fraction of 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵; i.e.,  how similar 𝐴 and 𝐵 are

• Another randomized data structure for distinct elements in practice:
– HyperLoglog   - even more space efficient but doesn’t have                              

                            the set combination properties of MinHash 
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