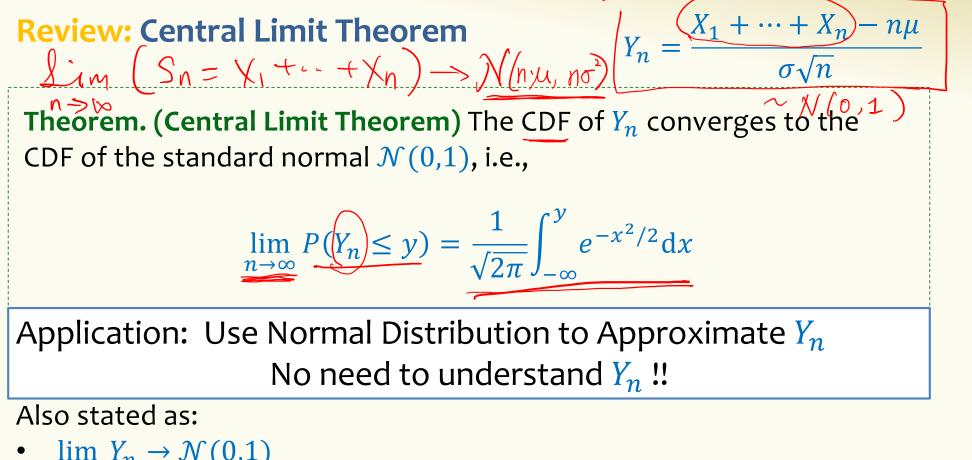
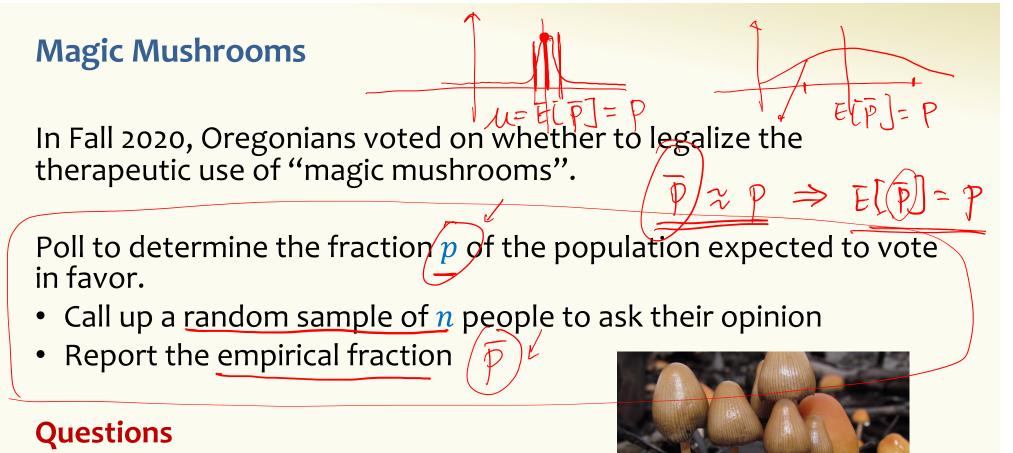
CSE 312 Foundations of Computing II

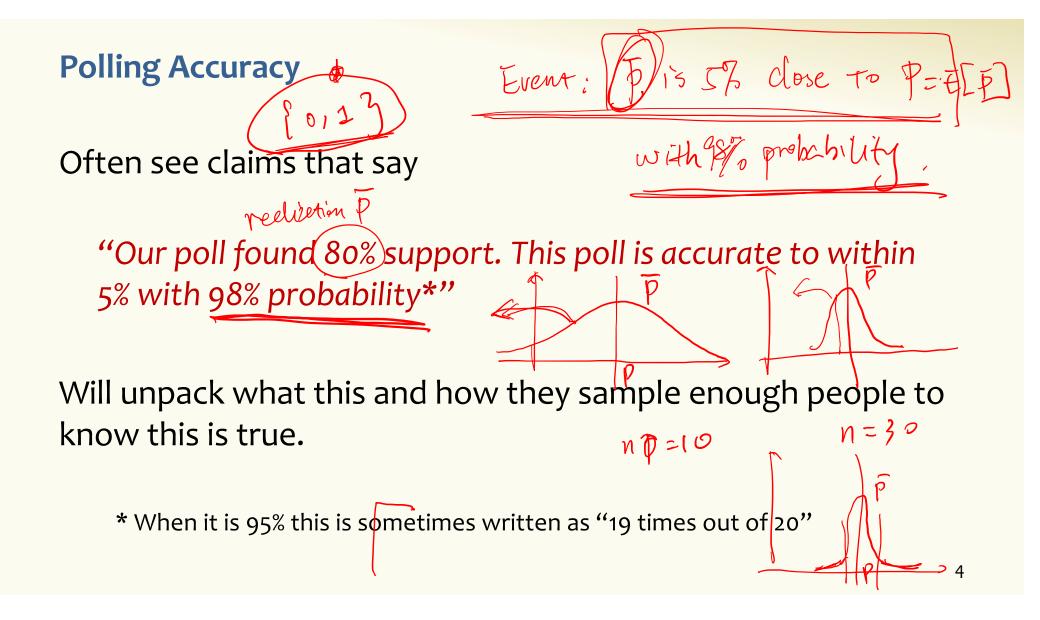
Lecture 17: Polling Continuity Correction & Distinct Elements



•
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i \to \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \text{ for } \mu = \mathbb{E}[X_i] \text{ and } \sigma^2 = \operatorname{Var}(X_i)$$

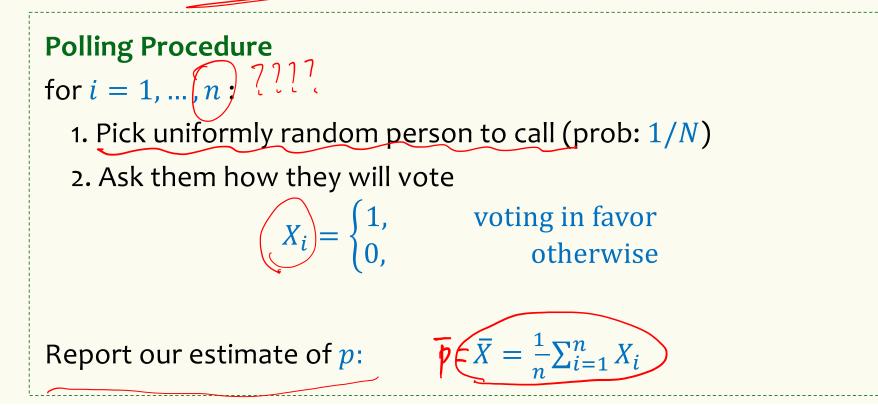


- Is this a good estimate?
- How to choose n?



Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n. **Problem:** We don't know p, want to estimate it



Formalizing Polls

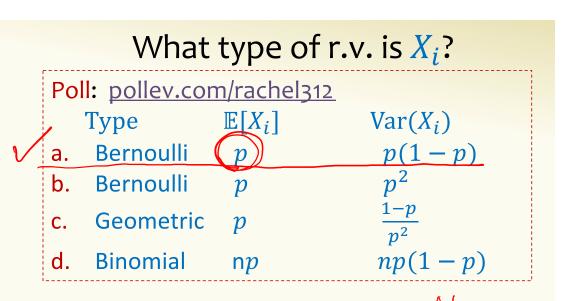
Population size *N*, true fraction of voting in favor *p*, sample size *n*. **Problem:** We don't know *p*

Polling Procedure

for i = 1, ..., n:

(rP

Ð

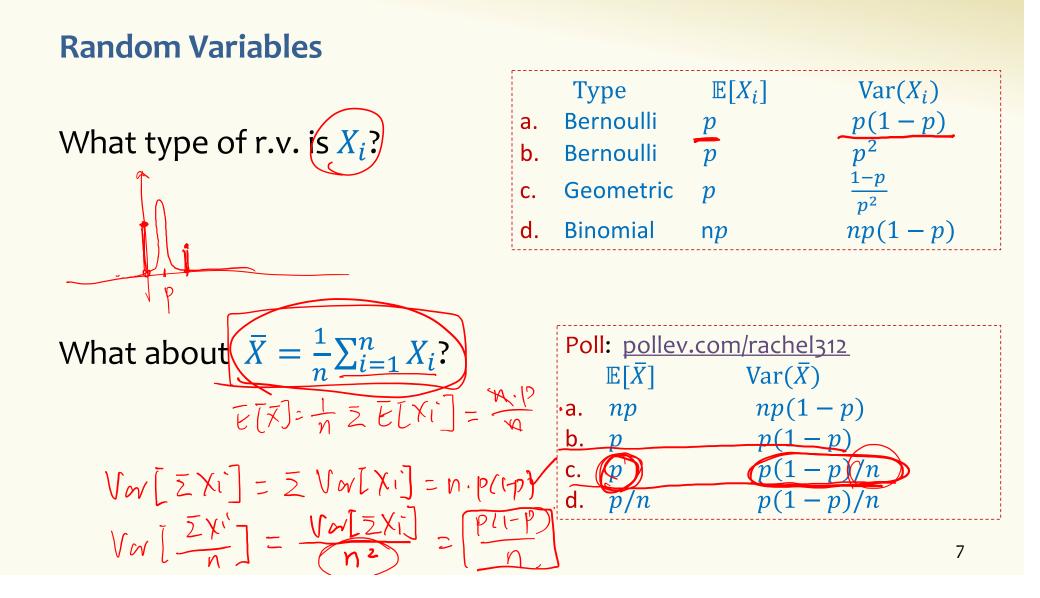


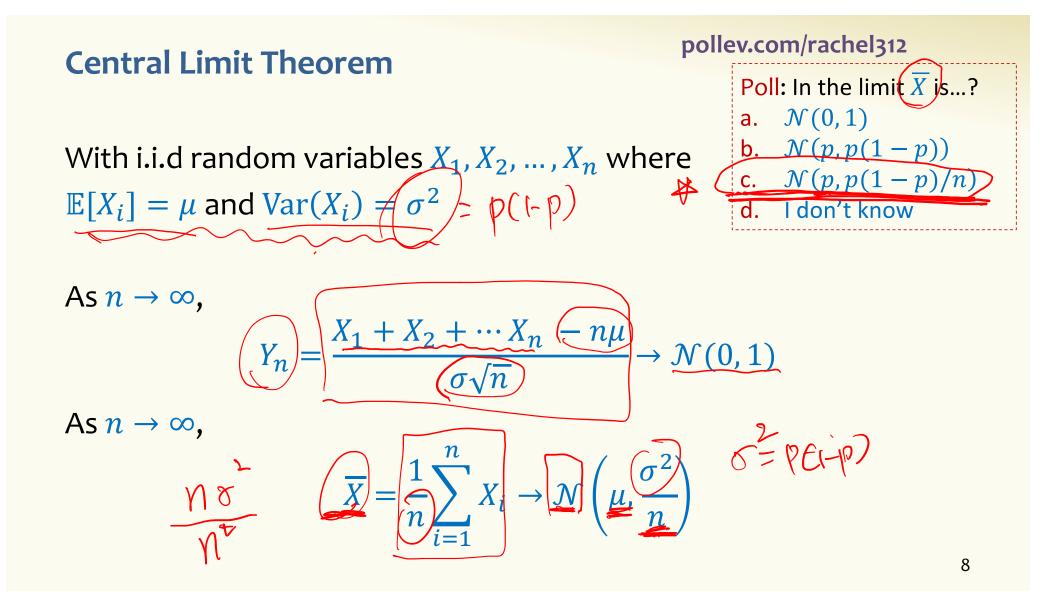
- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

Report our estimate of *p*:

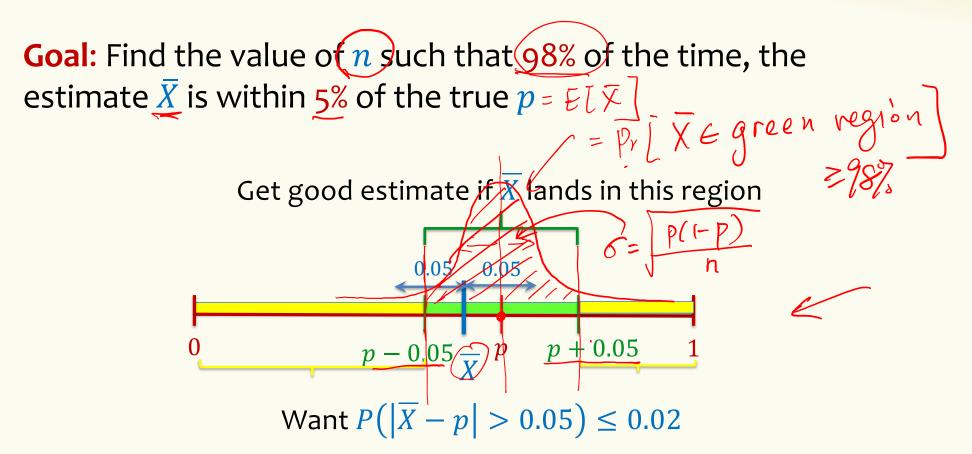
voting in favor otherwise

$$\overline{p} \cdot \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

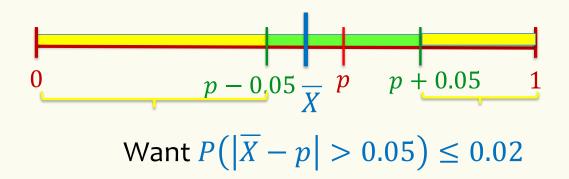




Roadmap: Bounding Error



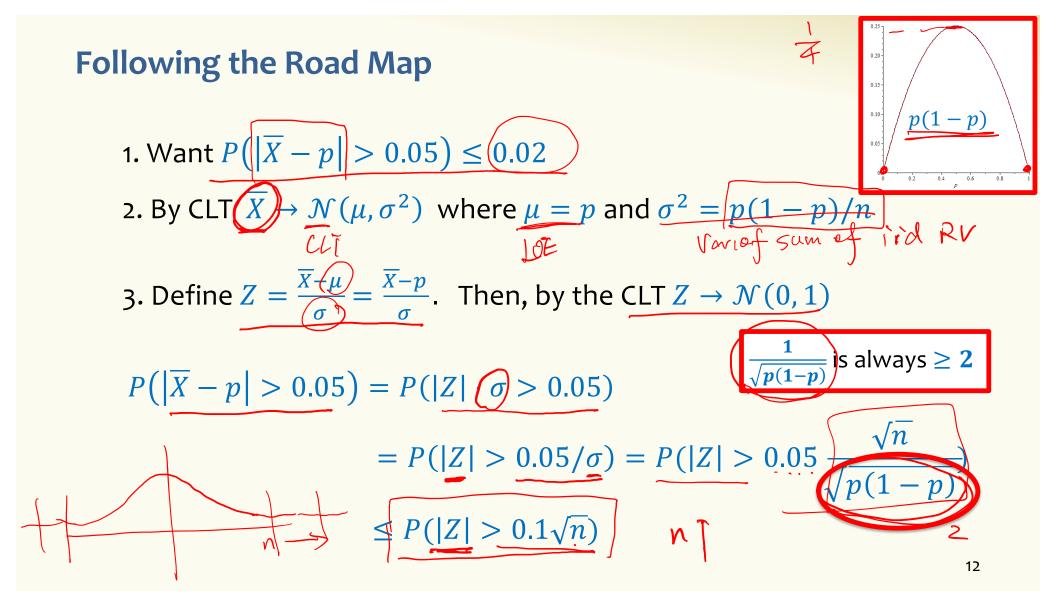
Roadmap: Bounding Error



Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \overline{X} is within 5% of the true p

- 1. Define probability of a "bad event" $P(|\overline{X} p| > 0.05) \le 0.02$ 2. Apply CLT
- - 3. Convert to a standard normal
 - 4. Solve for *n*



Following the Road Map

1. Want
$$P(|\overline{X} - p| > 0.05) \le 0.02$$

2. By CLT $\overline{X} \to \mathcal{N}(\mu, \sigma^2)$ where $\mu = p$ and $\sigma^2 = p(1 - p)/n$
3. Define $Z = \frac{\overline{X} - \mu}{\sigma} = \frac{\overline{X} - p}{\sigma}$. Then, by the CLT $Z \to \mathcal{N}(0, 1)$
 $P(|\overline{X} - p| > 0.05) = P(|Z| \cdot \sigma > 0.05)$
 $\frac{1}{\sqrt{p(1 - p)}}$ is always ≥ 2
 $P(|Z| > 0.05/\sigma) = P(|Z| > 0.05/\sigma)$
 $\frac{\sqrt{n}}{\sqrt{p(1 - p)}}$
 $\le P(|Z| > 0.1\sqrt{n}) \le 0.02$.

0.20

0.15 -

0.10

4. Solve for *n*

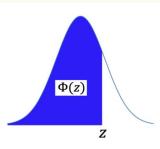
We want
$$P(|Z| > 0.1\sqrt{n}) \le 0.02$$
 where $Z \to \mathcal{N}(0, 1)$

- If we actually had $Z \sim \mathcal{N}(0, 1)$ then enough to show that $P(Z > 0.1\sqrt{n}) \leq 0.01$ since $\mathcal{N}(0, 1)$ is symmetric about 0
- Now $P(Z > z) = 1 \Phi(z)$ where $\Phi(z)$ is the CDF of the Standard $P(Z \le z) = 0.01$
- So, want to choose *n* so that $0.1\sqrt{n} \ge z$ where $\Phi(z) \ge 0.99$

Table of $\Phi(z)$ CDF of Standard Normal Distribution

Choose *n* so $0.1\sqrt{n} \ge z$ where $\Phi(z) \ge 0.99$

From table z = 2.33 works



z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98710	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.002 10	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

 Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0, 1)$

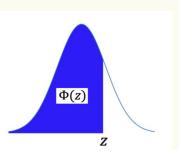
4. Solve for *n*

Choose *n* so $0.1\sqrt{n} \ge z$ where $\Phi(z) \ge 0.99$ pr[χ

From table z = 2.33 works

• So we can choose $0.1\sqrt{n} \ge 2.33$ or $\sqrt{n} \ge 23.3$

- Then $n \ge 543 \ge (23.3)^2$ would be 20.05 good enough ... if we had $Z \sim \mathcal{N}(0, 1)$ ≤ 0.02
 - We only have Z → N(0, 1) so there is some loss due to approximation error.
 - Maybe instead consider $\underline{z = 3.0}$ with $\Phi(z) \ge 0.99865$ and $n \ge 30^2 = 900$ to cover any loss.



Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice ⊗

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized model!

Agenda

- Continuity correction
- Application: Counting distinct elements

Example – Y_n is binomial

We understand binomial, so we can see how well approximation works

We flip *n* independent coins, heads with probability p = 0.75. *X* = # heads $\mu = \mathbb{E}(X) = 0.75n$ $\sigma^2 = Var(X) = p(1-p)n = 0.1875n$

n	exact	$\mathcal{N}ig(oldsymbol{\mu},oldsymbol{\sigma}^2ig)$ approx
10	0.4744072	0.357500327
20	0.38282735	0.302788308
50	0.25191886	0.207108089
100	0.14954105	0.124106539
200	0.06247223	0.051235217
1000	0.00019359	0.000130365

 $\mathbb{P}(X \le 0.7n)$

Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact.
$$\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx 0.2448$$

Approx. X = # heads $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = Var(X) = 0.25n = 10$

$$\mathbb{P}(20 \le X \le 21) = \Phi\left(\frac{20 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21 - 20}{\sqrt{10}}\right)$$

$$\approx \Phi\left(0 \le \frac{X - 20}{\sqrt{10}} \le 0.32\right)$$
$$= \Phi(0.32) - \Phi(0) \approx 0.1241$$

Example – Even Worse Approximation

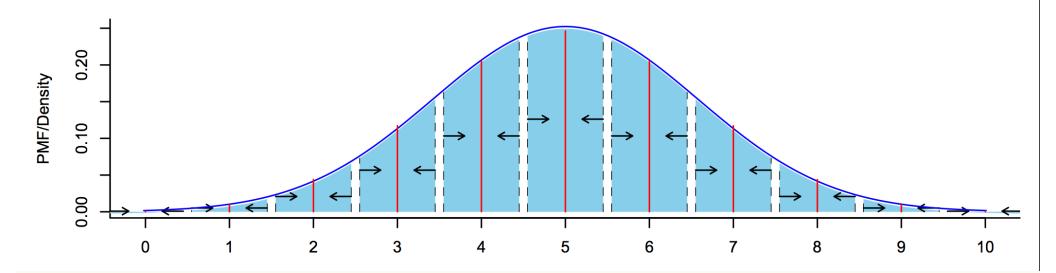
Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx \boxed{0.1254}$$

Approx. $\mathbb{P}(20 \le X \le 20) = 0$ (2)

Solution – Continuity Correction

Probability estimate for *i*: Probability for all *x* that round to *i*!



To estimate probability that discrete RV lands in (integer) interval $\{a, ..., b\}$, compute probability continuous approximation lands in interval $[a - \frac{1}{2}, b + \frac{1}{2}]$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads? **Exact.** $\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx 0.2448$ **Approx.** X = # heads $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = Var(X) = 0.25n = 10$ $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)$ $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)$ $= \Phi(0.47) - \Phi(-0.16) \approx 0.2452$

Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

Exact.
$$\mathbb{P}(X = 20) = {\binom{40}{20}} {\binom{1}{2}}^{40} \approx 0.1254$$

Approx.
$$\mathbb{P}(19.5 \le X \le 20.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)$$

 $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16\right)$
 $= \Phi(0.16) - \Phi(-0.16) \approx 0.1272$

Agenda

- Continuity correction
- Application: Counting distinct elements <

Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
 - Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
 - We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model – Problem Setup

Input: sequence (aka. "stream") of *N* elements $x_1, x_2, ..., x_N$ from a known universe *U* (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data ⇒ use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

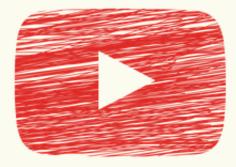
- Min
- Max
- Sum
- Average

Today: Counting <u>distinct</u> elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?



Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 - Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

- <u>Naïve solution</u>: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: *m* is huge!

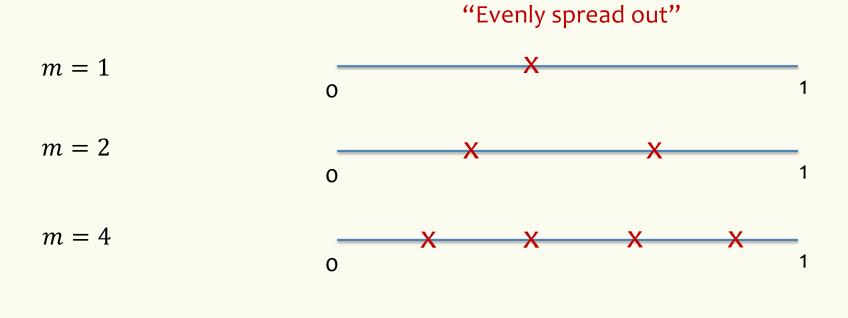
Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4 N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5 Want to compute number of **distinct** IDs in the stream.

How to do this <u>without</u> storing all the elements?

Detour – I.I.D. Uniforms

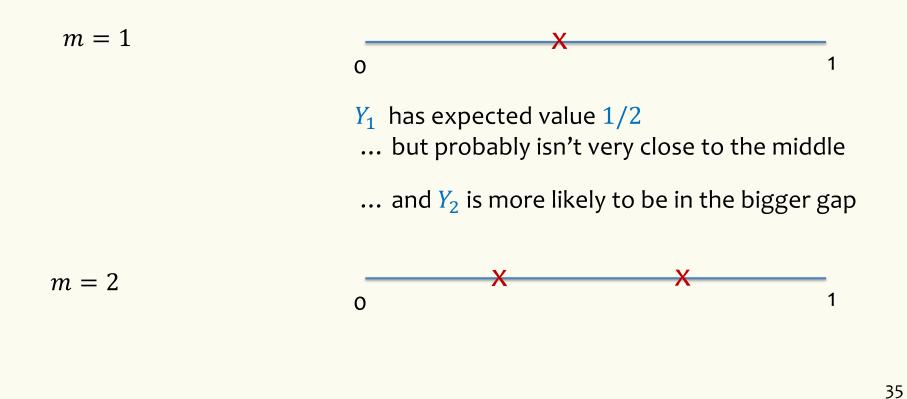
If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?



What is some intuition for this?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?



Detour – Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min\{Y_1, \dots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \dots, Y_m\} \ge y$ if and only if $Y_1 \ge y, \dots, Y_m \ge y$ (Similar to Section 6)

 $P(\min\{Y_1, \dots, Y_m\} \ge y) = P(Y_1 \ge y, \dots, Y_m \ge y)$ $y \in [0,1] = P(Y_1 \ge y) \cdots P(Y_m \ge y) \quad (\text{Independence})$ $= (1-y)^m$ $\Rightarrow P(\min\{Y_1, \dots, Y_m\} \le y) = 1 - (1-y)^m_{36}$

Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

Proof (Not covered)

$$\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \left(\int_0^x 1 \, \mathrm{d}y \right) \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \int_0^x f_Y(x) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \iint_{0 \le y \le x \le \infty} f_Y(x) = \int_0^\infty \int_y^\infty f_Y(x) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty P(Y \ge y) \, \mathrm{d}y$$

27

 $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) **Detour – Min of I.I.D. Uniforms** $Y = \min\{Y_1, \cdots, Y_m\}$ **Useful fact.** For any random variable *Y* taking non-negative values $\mathbb{E}[Y] = \int_{0}^{\infty} P(Y \ge y) \mathrm{d}y$ $\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) dy = \int_0^1 (1-y)^m dy$ $= -\frac{1}{m+1}(1-y)^{m+1} \bigg|_{0}^{1} = 0 - \left(-\frac{1}{m+1}\right) = \frac{1}{m+1}$

Detour – Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$ $\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$ m = 1⁰ $\mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{2}$ 1 m = 2^o $\mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$ 1 m = 41 0

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

 $x_1 = 5$ $x_2 = 2$ $x_3 = 27$ $x_4 = 35$ $x_5 = 4$ h(5)h(2)h(27)h(35)h(4)

5 distinct elements

→ 5 i.i.d. RVs
$$h(x_1), ..., h(x_5) \sim \text{Unif}(0,1)$$

 $\rightarrow \mathbb{E}[\min\{h(x_1), ..., h(x_5)\}] = \frac{1}{5+1} = \frac{1}{6}$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

 $x_1 = 5$ $x_2 = 2$ $x_3 = 27$ $x_4 = 5$ $x_5 = 4$ h(5)h(2)h(27)h(5)h(4)

4 distinct elements

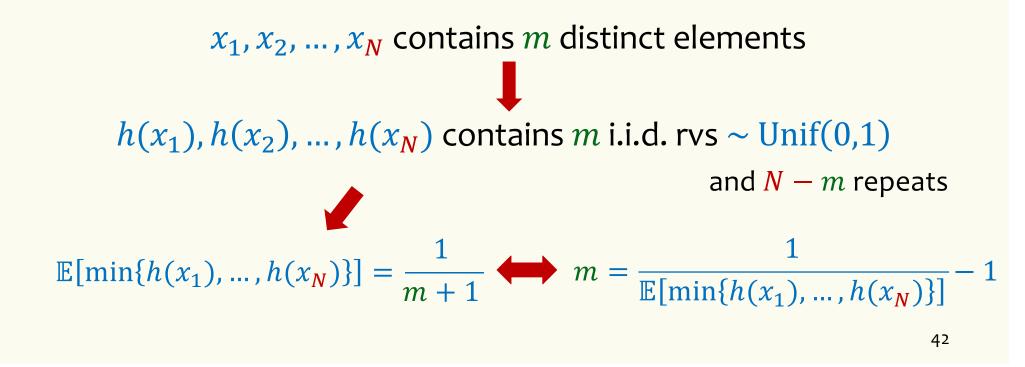
 \Rightarrow 4 i.i.d. RVs $h(x_1), h(x_2), h(x_3), h(x_5) \sim \text{Unif}(0,1)$ and $h(x_1) = h(x_4)$

 $\Rightarrow \mathbb{E}[\min\{h(x_1), \dots, h(x_5)\}] = \mathbb{E}[\min\{h(x_1), h(x_2), h(x_3), h(x_5)\}] = \frac{1}{4+1}$

41

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

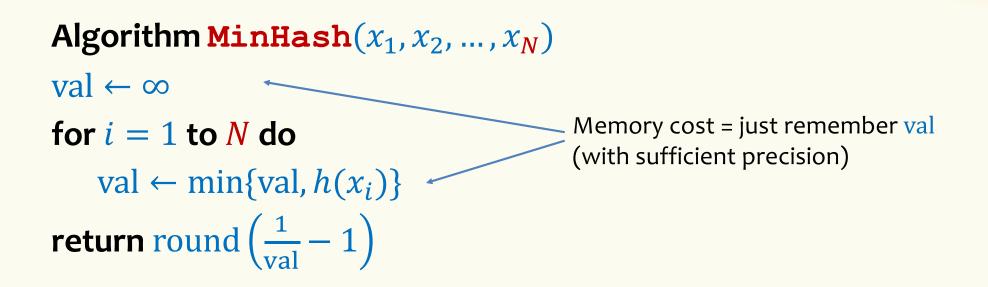


The MinHash Algorithm – Idea

$$m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

- 1. Compute val = $\min\{h(x_1), ..., h(x_N)\}$
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]$
- 3. Output round $\left(\frac{1}{\text{val}} 1\right)$

The MinHash Algorithm – Implementation



MinHash Example

Stream: 13, 25, 19, 25, 19, 19 Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

	Poll: pollev.com/rachel312
MinHash return?	a. 1
	b. 3
	c. 5
	d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23 Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is
$$\frac{1}{0.1} - 1 = 9$$
 Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

The MinHash Algorithm – Problem

Algorithm MinHash $(x_1, x_2, ..., x_N)$ val $\leftarrow \infty$ for i = 1 to N do But, val is not $\mathbb{E}[val]!$ val \leftarrow min{val, $h(x_i)$ } How far is val from $\mathbb{E}[val]$? return round $\left(\frac{1}{\text{val}} - 1\right)$ $Var(val) \approx \frac{1}{(m+1)^2}$ $val = \min\{h(x_1), \dots, h(x_N)\} \quad \mathbb{E}[val] = \frac{1}{m+1}$

47

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k independent hash functions $h^1, h^2, \dots h^k$

Algorithm $MinHash(x_1, x_2, ..., x_N)$

 $val_{1}, ..., val_{k} \leftarrow \infty$ for i = 1 to N do $val_{1} \leftarrow \min\{val_{1}, h^{1}(x_{i})\}, ..., val_{k} \leftarrow \min\{val_{k}, h^{k}(x_{i})\}$ $val \leftarrow \frac{1}{k} \sum_{i=1}^{k} val_{i}$ $Var(val) = \frac{1}{k} \frac{1}{(m+1)^{2}}$

MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
 - One also stores the element that has the minimum hash value for each of the k hash functions
 - Then, just given separate MinHashes for sets A and B, can also estimate - what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:
 HyperLoglog even more space efficient but doesn't have

the set combination properties of MinHash