CSE 312

Foundations of Computing II

Lecture 17: Polling
Continuity Correction \& Distinct Elements

Review: Central Limit Theorem

$\operatorname{Lim}\left(S_{n}=X_{1}+\cdots+X_{n}\right) \rightarrow \mathcal{N}\left(n \mu, n \sigma^{2}\right)$
Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the ${ }^{0}{ }^{0}$) CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Application: Use Normal Distribution to Approximate Y_{n} No need to understand $Y_{n}!!$
Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)$
- $\lim _{n \rightarrow \infty}\left(\underline{\frac{1}{n}} \sum_{i=1}^{n} X_{i}\right) \rightarrow \mathcal{N}\left(\mu, \underline{\frac{\sigma^{2}}{n}}\right)$ for $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

Magic Mushrooms

In Fall 2020, Oregonians voted on whether to legalize the therapeutic use of "magic mushrooms".

Poll to determine the fraction p f the population expected to vote in favor.

- Call up a random sample of n people to ask their opinion
- Report the empirical fraction

Questions

- Is this a good estimate?
- How to choose n ?

Polling Accuracy

Often see claims that say

"Our poll found 80% support. This poll is accurate to within 5% with 98% probability*"

Will unpack what this and how they sample enough people to know this is true.

$$
n \phi=10
$$

$$
n=30
$$

* When it is 95% this is sometimes written as " 19 times out of 20 "

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.
Problem: We don't know p, want to estimate it

Polling Procedure

$$
\text { for } i=1, \ldots n ; ? ? ? ?
$$

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of p :

$$
\bar{p}-\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

Polling Procedure

for $i=1, \ldots, n$:

What type of rv. is X_{i} ?

Poll: pollev.com/rachel312

Type	$\mathbb{E}\left[X_{i}\right]$	$\operatorname{Var}\left(X_{i}\right)$
Bernoulli	p	$p(1-p)$
Bernoulli	p	p^{2}
Geometric	p	$\frac{1-p}{p^{2}}$
Binomial	$\mathrm{n} p$	$n p(1-p)$

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

Report our estimate of p :
$X_{i}=\left\{\begin{array}{l}1, \\ 0,\end{array}\right.$

$$
\bar{p}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Random Variables

What type of r.v. s X_{i} ?

	Type	$\mathbb{E}\left[X_{i}\right]$	$\operatorname{Var}\left(X_{i}\right)$
a. Bernoulli	p	$\frac{p(1-p)}{p^{2}}$	
b. Bernoulli	$\frac{p}{}$	$\frac{1-p}{p^{2}}$	
d.	Beometric	p	$n p(1-p)$

What about $\frac{\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} ?}{E[\bar{X}]=\frac{1}{n} \sum \bar{E}\left[X_{i}\right]}=\frac{n \cdot p}{\mathrm{x}}$
Poll: pollev.com/rachel312
$\mathbb{E}[\bar{X}] \quad \operatorname{Var}(\bar{X})$
a. $n p$
$n p(1-p)$
b. p
$\operatorname{Var}\left[\Sigma X_{i}\right]=\Sigma \operatorname{Var}\left[X_{i}\right]=n \cdot p(1-p) \frac{p(1-p)}{\text { c. (p) }} \frac{p(p(1-p)(n}{p(1-p) / n}$
$\operatorname{Var}\left[\frac{\sum X_{i}^{i}}{n}\right]=\frac{\operatorname{Var}\left[\sum X_{i}\right]}{\left(n^{2}\right)}=\frac{p(1-p}{n}$

Central Limit Theorem

pollev.com/rachel312

Poll: In the limit \bar{X} is...?
a. $\mathcal{N}(0,1)$

With i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ where $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\left(\sigma^{2}\right)=p(1-p)$
b. $\mathcal{N}(p, p(1-p))$
$* \frac{\text { c. } \mathcal{N}(p, p(1-p) / n)}{\text { d. Idon't know }}$

As $n \rightarrow \infty$,

As $n \rightarrow \infty$,

$$
Y_{n}=\frac{X_{1}+X_{2}+\cdots X_{n}-n \mu}{(\sigma \sqrt{n}} \rightarrow \hat{\mathcal{N}}(0,1)
$$

$$
\frac{n \gamma^{2}}{n^{2}} \quad \bar{x}=\left(\begin{array} { l }
{ 1 } \\
{ n }
\end{array} \sum _ { i = 1 } ^ { n } X \rightarrow \left(\underline{\mu}^{\left(\sigma^{2}\right)} \sigma^{2}=\rho \in(-1 p)\right.\right.
$$

Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true $p=E[\bar{X}]$

Roadmap: Bounding Error

Want $P(|\bar{X}-p|>0.05) \leq 0.02$

Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

1. Define probability of a "bad event" $P(|\bar{X}-p|>0.05) \leq 0.02$
2. Apply CLT
3. Convert to a standard normal
4. Solve for n

Following the Road Map

$\frac{1}{4}$

1. Want $P(|\bar{X}-p| \mid>0.05) \leq 0.02$
2. $\operatorname{By} \operatorname{CLT} X \frac{\mathcal{N}}{C L T}\left(\mu, \sigma^{2}\right)$ where $\frac{\mu=p}{\text { DE }}$ and $\frac{\sigma^{2}=p(1-p) / n}{\text { variof sum of }}$ ind $R V$
3. Define $Z=\frac{\bar{x}-\mu}{\sigma}=\frac{\bar{x}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$

$$
P(|\bar{X}-p|>0.05)=P(|Z| \sigma)>0.05)
$$

$$
\frac{1}{\sqrt{p(1-p)}} \text { s always } \geq 2
$$

$$
\begin{aligned}
& =P(\mid \underline{|z|} \underline{0.05 / \sigma})=\underline{P(|Z|>0.05 \sqrt{n}} \\
& +\frac{P(|Z|>0.1 \sqrt{n})}{2} \quad n T
\end{aligned}
$$

Following the Road Map

1. Want $P(|\bar{X}-p|>0.05) \leq 0.02$

2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$
$P(|\bar{X}-p|>0.05)=P(|Z| \cdot \sigma>0.05)$ $\frac{1}{\sqrt{p(1-p)}}$ is always ≥ 2

$$
\begin{aligned}
& -P(|7|>0 \cap 5 / \sigma)-P(|7| \\
& \left.\frac{-P \text { oose } n \text { so that this is at most } 0.02}{} \leq 0.05 \frac{\sqrt{n}}{\sqrt{p(1-p)}}\right) \\
& \leq P(|Z|>0.1 \sqrt{n}) \leq 0.02
\end{aligned}
$$

4. Solve for n

We want $P(|Z|>0.1 \sqrt{n}) \subseteq 0.02$ where $Z \rightarrow \mathcal{N}(0,1)$

- If we actually had $Z \sim \mathcal{N}(0,1)$ then enough to show that $\underline{P(Z>\underline{0.1 \sqrt{n}})} \leq \underline{0.01 \text { since } \mathcal{N}(0,1) \text { is symmetric about } 0}$
- Now $P(Z>z)=1-\Phi(z)$ where $\Phi(z)$ is the CDF of the Standard $P(z \leq z) \geqslant 0.99$
- So, want to choose n so that $0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

Table of $\Phi(\mathbf{z})$ CDF of

 Standard Normal DistributionChoose n so
$0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

From table $z=2.33$ works

Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.7421	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.9807	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.9867	. 9871	0.9874	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.9	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	促	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.9959	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

4. Solve for n

Choose n so
$0.1 \sqrt{n} \geq z$ where

$$
\Phi(z) \geq 0.99
$$

- So we can choose $0.1 \sqrt{n} \geq 2.33$

From table $z=2.33$ works or $\sqrt{n} \geq 23.3$

- Then $n \geq 543 \geq(23.3)^{2}$ would be 20.050 god enough \ldots if we had $Z \sim \mathcal{N}(0,1)$ ≤ 0.02
- We only have $Z \rightarrow \mathcal{N}(0,1)$ so there is some loss due to approximation error.
- Maybe instead consider $\underline{z}=3.0$ with $\Phi(z) \geq 0.99865$ and $n \geq 30^{2}=900$ to cover any loss.

Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice :

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized mode!!

Agenda

- Continuity correction
- Application: Counting distinct elements

Example - Y_{n} is binomial

We understand binomial, so we can see how well approximation works
We flip n independent coins, heads with probability $p=0.75$.
$X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.75 n \quad \sigma^{2}=\operatorname{Var}(X)=p(1-p) n=0.1875 n$

	n	exact	$\mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}\right)$ approx
$\mathbb{P}(X \leq 0.7 n)$	10	0.4744072	0.357500327
	20	0.38282735	0.302788308
	100	0.25191886	0.207108089
	200	0.06247223	0.124106539
	1000	0.00019359	0.0001350365

Example - Naive Approximation

Fair coin flipped (independently) $\mathbf{4 0}$ times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $\quad X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{aligned}
\mathbb{P}(20 \leq X \leq 21) & =\Phi\left(\frac{20-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21-20}{\sqrt{10}}\right) \\
& \approx \Phi\left(0 \leq \frac{X-20}{\sqrt{10}} \leq 0.32\right) \\
& =\Phi(0.32)-\Phi(0) \approx 0.1241
\end{aligned}
$$

Example - Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ heads?
Exact. $\quad \mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$

Approx. $\mathbb{P}(20 \leq X \leq 20)=0$

Solution - Continuity Correction

Probability estimate for i : Probability for all x that round to i !

To estimate probability that discrete RV lands in (integer) interval $\{a, \ldots, b\}$, compute probability continuous approximation lands in interval $\left[a-\frac{1}{2}, b+\frac{1}{2}\right]$

Example - Continuity Correction

Fair coin flipped (independently) $\mathbf{4 0}$ times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $\quad X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{aligned}
& \mathbb{P}(19.5 \leq X \leq 21.5)=\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21.5-20}{\sqrt{10}}\right) \\
& \approx \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.47\right) \\
&= \Phi(0.47)-\Phi(-0.16) \approx 0.2452
\end{aligned}
$$

Example - Continuity Correction

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ heads?
Exact. $\mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$

Approx. $\mathbb{P}(19.5 \leq X \leq 20.5)=\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{20.5-20}{\sqrt{10}}\right)$

$$
\begin{aligned}
& \approx \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.16\right) \\
& =\Phi(0.16)-\Phi(-0.16) \approx 0.1272
\end{aligned}
$$

Agenda

- Continuity correction
- Application: Counting distinct elements

Data mining - Stream Model

- In many data mining situations, data often not known ahead of time.
- Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model - Problem Setup

Input: sequence (aka. "stream") of N elements $x_{1}, x_{2}, \ldots, x_{N}$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data \Rightarrow use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application
You are the content manager at YouTube, and you are trying to figure out the distinct view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 distinct view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
- Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
- Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=\#$ of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream = 5
Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: m is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=\#$ of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

What is some intuition for this?

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

Y_{1} has expected value $1 / 2$
... but probably isn't very close to the middle
\ldots and Y_{2} is more likely to be in the bigger gap

$$
m=2
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}\left[\min \left\{Y_{1}, \cdots, Y_{m}\right\}\right]$?

CDF: Observe that $\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y$ if and only if $Y_{1} \geq y, \ldots, Y_{m} \geq y$
(Similar to Section 6)

$$
\begin{aligned}
P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y\right) & =P\left(Y_{1} \geq y, \ldots, Y_{m} \geq y\right) \\
y \in[0,1] & =P\left(Y_{1} \geq y\right) \cdots P\left(Y_{m} \geq y\right) \quad \text { (Independence) } \\
& =(1-y)^{m} \\
& \Rightarrow P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \leq y\right)=1-(1-y)^{m}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

$$
\begin{aligned}
& \text { Proof (Not covered) } \\
& \begin{aligned}
\mathbb{E}[Y]=\int_{0}^{\infty} x \cdot f_{Y}(x) \mathrm{d} x & =\int_{0}^{\infty}\left(\int_{0}^{x} 1 \mathrm{~d} y\right) \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty} \int_{0}^{x} f_{Y}(x) \mathrm{d} y \mathrm{~d} x \\
& =\iint_{0 \leq y \leq x \leq \infty} f_{Y}(x)=\int_{0}^{\infty} \int_{y}^{\infty} f_{Y}(x) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
\end{aligned}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

$$
\begin{aligned}
& Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1) \text { (i.i.d.) } \\
& Y=\min \left\{Y_{1}, \cdots, Y_{m}\right\}
\end{aligned}
$$

Useful fact. For any random variable Y taking non-negative values

$$
\begin{aligned}
& \mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y \\
& \mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y=\int_{0}^{1}(1-y)^{m} \mathrm{~d} y \\
&=-\left.\frac{1}{m+1}(1-y)^{m+1}\right|_{0} ^{1}=0-\left(-\frac{1}{m+1}\right)=\frac{1}{m+1}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up?

$$
\begin{array}{cc}
\quad \text { In general, } \mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1} \\
m=1 & 0 \frac{\mathbb{E}\left[\min \left(Y_{1}\right)\right]=\frac{1}{1+1}=\frac{1}{2}}{x} 1 \\
m=2 & 0 \frac{0}{\mathbb{E}\left[\min \left(Y_{1}, Y_{2}\right)\right]=\frac{1}{2+1}=\frac{1}{3}} \\
m=4 & 0
\end{array}
$$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{array}{ccccc}
x_{1}=5 & x_{2}=2 & x_{3}=27 & x_{4}=35 & x_{5}=4 \\
h(5) & h(2) & h(27) & h(35) & h(4)
\end{array}
$$

5 distinct elements

$$
\begin{aligned}
& \rightarrow 5 \text { i.i.d. RVs } h\left(x_{1}\right), \ldots, h\left(x_{5}\right) \sim \operatorname{Unif}(0,1) \\
& \\
& \quad \rightarrow \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{5}\right)\right\}\right]=\frac{1}{5+1}=\frac{1}{6}
\end{aligned}
$$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{array}{ccccc}
x_{1}=5 & x_{2}=2 & x_{3}=27 & x_{4}=5 & x_{5}=4 \\
h(5) & h(2) & h(27) & h(5) & h(4)
\end{array}
$$

4 distinct elements
$\Rightarrow 4$ i.i.d. RVs $h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right), h\left(x_{5}\right) \sim \operatorname{Unif}(0,1)$ and $h\left(x_{1}\right)=h\left(x_{4}\right)$
$\Rightarrow \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{5}\right)\right\}\right]=\mathbb{E}\left[\min \left\{h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right), h\left(x_{5}\right)\right\}\right]=\frac{1}{4+1}$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

The MinHash Algorithm - Idea $\quad m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1$

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output round $\left(\frac{1}{\mathrm{val}}-1\right)$

The MinHash Algorithm - Implementation

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
val $\leftarrow \infty$
for $i=1$ to N do
val $\leftarrow \min \left\{v a l, h\left(x_{i}\right)\right\}$
return round $\left(\frac{1}{\text { val }}-1\right)$

MinHash Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does
MinHash return?

```
Poll: pollev.com/rachel312
a. 1
b. }
c. 5
d. No idea
```


MinHash Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is $\frac{1}{0.1}-1=9$
Clearly, not a very good answer!
Not unlikely: $P(h(x)<0.1)=0.1$

The MinHash Algorithm - Problem

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
val $\leftarrow \infty$
for $i=1$ to N do
val $\leftarrow \min \left\{v a l, h\left(x_{i}\right)\right\}$
return round $\left(\frac{1}{\text { val }}\right.$
But, val is not $\mathbb{E}[$ val $]$! How far is val from $\mathbb{E}[$ val $]$?
$\operatorname{Var}(\mathrm{val}) \approx \frac{1}{(m+1)^{2}}$
val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\} \quad \mathbb{E}[$ val $]=\frac{1}{m+1}$

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$
Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$\operatorname{val}_{1}, \ldots, \operatorname{val}_{\mathrm{k}} \leftarrow \infty$
for $i=1$ to N do
$\operatorname{val}_{1} \leftarrow \min \left\{\operatorname{val}_{1}, h^{1}\left(x_{i}\right)\right\}, \ldots, \operatorname{val}_{\mathrm{k}} \leftarrow \min \left\{\operatorname{val}_{k}, h^{k}\left(x_{i}\right)\right\}$
$\mathrm{val} \leftarrow \frac{1}{k} \sum_{i=1}^{k} \operatorname{val}_{\mathrm{i}}$
return round $\left(\frac{1}{\mathrm{val}}-1\right)$

$$
\operatorname{Var}(\mathrm{val})=\frac{1}{k} \frac{1}{(m+1)^{2}}
$$

MinHash and Estimating \# of Distinct Elements in Practice

- MinHash in practice:
- One also stores the element that has the minimum hash value for each of the k hash functions
- Then, just given separate MinHashes for sets A and B, can also estimate
- what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:
- HyperLoglog - even more space efficient but doesn't have the set combination properties of MinHash

