CSE 312

Foundations of Computing II

Lecture 18: Distinct Elements & Joint Distributions

Agenda

- Continuity correction
- Application: Counting distinct elements

Example – Y_n is binomial

We understand binomial, so we can see how well approximation works

We flip n independent coins, heads with probability p = 0.75.

$$X = \# \text{ heads}$$
 $\mu = \mathbb{E}(X) = 0.75n$ $\sigma^2 = \text{Var}(X) = p(1-p)n = 0.1875n$

$$\mathbb{P}(X \le 0.7n)$$

n	exact	$\mathcal{N}ig(\mu, \pmb{\sigma^2}ig)$ approx
10	0.4744072	0.357500327
20	0.38282735	0.302788308
50	0.25191886	0.207108089
100	0.14954105	0.124106539
200	0.06247223	0.051235217
1000	0.00019359	0.000130365

Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact.
$$\mathbb{P}(X \in \{20,21\}) = \left[\binom{40}{20} + \binom{40}{21} \right] \left(\frac{1}{2} \right)^{40} \approx \boxed{0.2448}$$

Approx.
$$X = \# \text{ heads}$$
 $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = \text{Var}(X) = 0.25n = 10$

$$\mathbb{P}(20 \le X \le 21) = \Phi\left(\frac{20 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21 - 20}{\sqrt{10}}\right)$$

$$\approx \Phi\left(0 \le \frac{X - 20}{\sqrt{10}} \le 0.32\right)$$

$$=\Phi(0.32)-\Phi(0)\approx 0.1241$$

Example – Even Worse Approximation

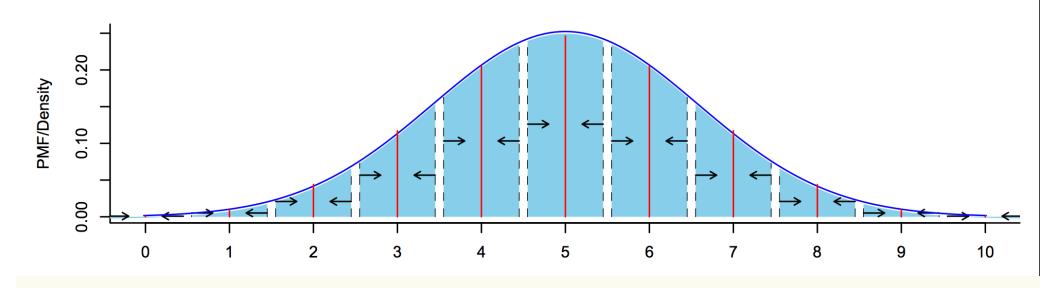
Fair coin flipped (independently) 40 times. Probability of 20 heads?

Exact.
$$\mathbb{P}(X = 20) = {40 \choose 20} {1 \over 2}^{40} \approx \boxed{0.1254}$$

Approx.
$$\mathbb{P}(20 \le X \le 20) = 0$$

Solution – Continuity Correction

Probability estimate for i: Probability for all x that round to i!



To estimate probability that discrete RV lands in (integer) interval $\{a, ..., b\}$, compute probability continuous approximation lands in interval $[a - \frac{1}{2}, b + \frac{1}{2}]$

6

Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?

Exact.
$$\mathbb{P}(X \in \{20,21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx 0.2448$$

Approx. $X = \# \text{ heads} \quad \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10$
 $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)$
 $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)$
 $= \Phi(0.47) - \Phi(-0.16) \approx 0.2452$

Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

Exact.
$$\mathbb{P}(X = 20) = {40 \choose 20} (\frac{1}{2})^{40} \approx 0.1254$$

Approx.
$$\mathbb{P}(19.5 \le X \le 20.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)$$

$$\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16\right)$$

$$= \Phi(0.16) - \Phi(-0.16) \approx \boxed{0.1272}$$

Agenda

- Continuity correction
- Application: Counting distinct elements

Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
 - Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
 - We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model – Problem Setup

Input: sequence (aka. "stream") of N elements $x_1, x_2, ..., x_N$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data ⇒ use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

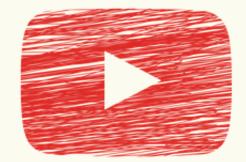
Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!



Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 - Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of distinct IDs in the stream.

- <u>Naïve solution:</u> As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: *m* is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

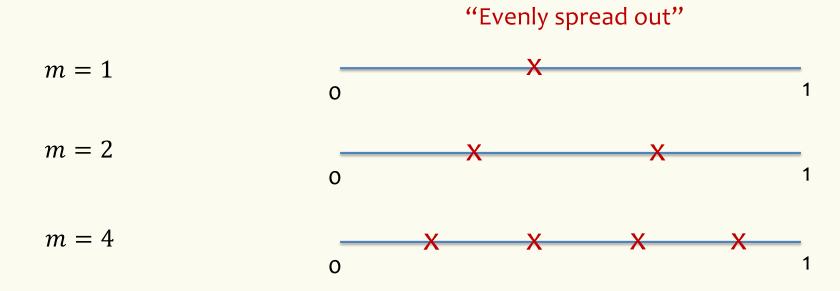
Want to compute number of distinct IDs in the stream.

How to do this <u>without</u> storing all the elements?

Brain Break

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?



What is some intuition for this?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

m=1 o X o Y_1 has expected value 1/2 ... but probably isn't very close to the middle ... and Y_2 is more likely to be in the bigger gap

m=2 X X

Detour – Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min\{Y_1, \dots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \dots, Y_m\} \ge y$ if and only if $Y_1 \ge y, \dots, Y_m \ge y$ (Similar to Section 6)

$$\begin{split} P(\min\{Y_1,\cdots,Y_m\} \geq y) &= P(Y_1 \geq y,\ldots,Y_m \geq y) \\ y \in [0,1] &= P(Y_1 \geq y) \cdots P(Y_m \geq y) \qquad \text{(Independence)} \\ &= (1-y)^m \\ &\Rightarrow P(\min\{Y_1,\cdots,Y_m\} \leq y) = 1 - (1-y)^m \\ \geq P(y_1 \geq y) = 1 - (1-y)^m \\ &\Rightarrow P(y_1 \geq y) = 1 - (1-y)^$$

Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

Proof (Not covered)

$$\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \left(\int_0^x 1 \, \mathrm{d}y \right) \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \int_0^x f_Y(x) \, \mathrm{d}y \, \mathrm{d}x$$
$$= \iint_{0 \le y \le x \le \infty} f_Y(x) = \int_0^\infty \int_y^\infty f_Y(x) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty P(Y \ge y) \, \mathrm{d}y$$

Detour – Min of I.I.D. Uniforms

 $Y_1, \dots, Y_m \sim \text{Unif}(0,1) \text{ (i.i.d.)}$ $Y = \min\{Y_1, \dots, Y_m\}$

Useful fact. For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) dy = \int_0^1 (1 - y)^m dy$$
$$= -\frac{1}{m+1} (1 - y)^{m+1} \Big|_0^1 = 0 - \left(-\frac{1}{m+1}\right) = \frac{1}{m+1}$$

Detour - Min of I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up?

In general,
$$\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$$

$$\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$$

$$m = 1$$

$$0 \mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{3}$$

$$m = 2$$

$$0 \mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$$

$$m = 4$$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$

Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

$$x_1 = 5$$
 $x_2 = 2$ $x_3 = 27$ $x_4 = 35$ $x_5 = 4$ $h(5)$ $h(2)$ $h(27)$ $h(35)$ $h(4)$

5 distinct elements

→ 5 i.i.d. RVs
$$h(x_1), ..., h(x_5) \sim \text{Unif}(0,1)$$

$$\rightarrow \mathbb{E}[\min\{h(x_1), ..., h(x_5)\}] = \frac{1}{5+1} = \frac{1}{6}$$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$

Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

$$x_1 = 5$$
 $x_2 = 2$ $x_3 = 27$ $x_4 = 5$ $x_5 = 4$ $h(5)$ $h(2)$ $h(2)$ $h(5)$ $h(4)$

4 distinct elements

$$\Rightarrow$$
 4 i.i.d. RVs $h(x_1), h(x_2), h(x_3), h(x_5) \sim \text{Unif}(0,1)$ and $h(x_1) = h(x_4)$

$$\Rightarrow \mathbb{E}[\min\{h(x_1), \dots, h(x_5)\}] = \mathbb{E}[\min\{h(x_1), h(x_2), h(x_3), h(x_5)\}] = \frac{1}{4+1}$$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$

Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

 x_1, x_2, \dots, x_N contains m distinct elements

 $h(x_1), h(x_2), \dots, h(x_N)$ contains m i.i.d. rvs $\sim \text{Unif}(0,1)$

and N - m repeats

$$\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}] = \frac{1}{m+1} \iff m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

The MinHash Algorithm – Idea

$$m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

- 1. Compute val = $\min\{h(x_1), ..., h(x_N)\}$
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1), ..., h(x_N)\}]$
- 3. Output round $\left(\frac{1}{\text{val}} 1\right)$

The MinHash Algorithm – Implementation

Algorithm MinHash $(x_1, x_2, ..., x_N)$ val $\leftarrow \infty$ for i = 1 to N do

val $\leftarrow \min\{\text{val}, h(x_i)\}$ min $\{\text{val}, h(x_i)\}$ return round $\left(\frac{1}{\text{val}} - 1\right)$

MinHash Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does MinHash return?

Poll: pollev.com/rachel312

a. 1

b. 3

c. 5

d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is
$$\frac{1}{0.1} - 1 = 9$$

Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

The MinHash Algorithm – Problem

Algorithm MinHash $(x_1, x_2, ..., x_N)$

$$val \leftarrow \infty$$

for i = 1 to N do

$$val \leftarrow min\{val, h(x_i)\}$$

return round $\left(\frac{1}{\text{val}} - 1\right)$

$$val = \min\{h(x_1), \dots, h(x_N)\} \qquad \mathbb{E}[val] = \frac{1}{m+1}$$

But, val is not $\mathbb{E}[\text{val}]$! How far is val from $\mathbb{E}[\text{val}]$?

$$Var(val) \approx \frac{1}{(m+1)^2}$$

How can we reduce the variance?

Idea: Repetition to reduce variance!

Use k independent hash functions h^1 , h^2 , $\cdots h^k$

Algorithm MinHash $(x_1, x_2, ..., x_N)$

$$\text{val}_1, \dots, \text{val}_k \leftarrow \infty$$

for i = 1 to N do

$$\operatorname{val}_1 \leftarrow \min\{\operatorname{val}_1, h^1(x_i)\}, \dots, \operatorname{val}_k \leftarrow \min\{\operatorname{val}_k, h^k(x_i)\}$$

$$val \leftarrow \frac{1}{k} \sum_{i=1}^{k} val_i$$

return round
$$\left(\frac{1}{\text{val}} - 1\right)$$

$$Var(val) = \frac{1}{k} \frac{1}{(m+1)^2}$$

MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
 - One also stores the element that has the minimum hash value for each of the k hash functions
 - Then, just given separate MinHashes for sets A and B, can also estimate
 - what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice:
 - HyperLoglog even more space efficient but doesn't have the set combination properties of MinHash