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Lecture 19: Joint Distributions
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Stream Model – Problem Setup

Input: sequence (aka.  “stream”) of 𝑁 elements	𝑥!, 𝑥", … , 𝑥# 
from a known universe 𝑈	(e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to 
right pass, where:
– Elements processed in real time
– Can’t store the full data ⇒ use minimal amount of storage while 

maintaining working “summary”



Today: Counting distinct elements

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4

Input: sequence (aka.  “stream”) of 𝑁 elements	𝑥!, 𝑥", … , 𝑥# 
from a known universe 𝑈	(e.g., 8-byte integers).

Goal: count number of distinct elements

Constraint: Elements processed in real time
– use minimal amount of storage while maintaining working 

“summary”



Detour – Min of I.I.D. Uniforms
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In general,  𝔼[min 𝑌!, ⋯ , 𝑌' ] = !
'#!

If 𝑌!, ⋯ , 𝑌'~	Unif 0,1  (iid) where do we expect the points to end up?
 



Distinct Elements – Hashing into [𝟎, 𝟏]

5

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

𝑥! = 5   𝑥% = 2   𝑥& = 27	   𝑥" = 35	   𝑥$ = 4

ℎ 5 ℎ 2 ℎ 27 ℎ 35 ℎ 4

5 distinct elements 

→ 5 i.i.d. RVs ℎ 𝑥! , … , ℎ 𝑥$ 	~	Unif 0,1

→ 𝔼 min ℎ 𝑥! , … , ℎ 𝑥$ = !
$#!

= !
(



Distinct Elements – Hashing into [𝟎, 𝟏]
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𝑥! = 5   𝑥% = 2   𝑥& = 27	   𝑥" = 5	   𝑥$ = 4

ℎ 5 ℎ 2 ℎ 27 h 5 ℎ 4

4 distinct elements 

⇒ 4 i.i.d. RVs ℎ 𝑥! , ℎ 𝑥% , ℎ 𝑥& , ℎ 𝑥$ 	~	Unif 0,1  and ℎ 𝑥! = ℎ 𝑥"  

⇒ 𝔼 min ℎ 𝑥! , … , ℎ 𝑥$ = 𝔼 min ℎ 𝑥! , ℎ 𝑥% , ℎ 𝑥& , ℎ 𝑥$ = !
"#!

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent



Distinct Elements – Hashing into [𝟎, 𝟏]
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𝑥!, 𝑥", … , 𝑥# contains 𝑚 distinct elements

𝔼 min ℎ(𝑥!), … , ℎ(𝑥)) =
1

𝑚 + 1

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

ℎ(𝑥!), ℎ 𝑥" , … , ℎ(𝑥#) contains 𝑚 i.i.d. rvs ~	Unif 0,1  
and 𝑁 − 𝑚 repeats

𝑚 =
1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥))
− 1



The MinHash Algorithm – Idea

1. Compute val = min{ℎ(𝑥!), … , ℎ(𝑥#)}
2. Assume that val ≈ 𝔼 min ℎ(𝑥!), … , ℎ(𝑥#)

3. Output round !
)*+
− 1
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𝑚 =
1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥))
− 1



The MinHash Algorithm – Implementation
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Memory cost = just remember val 
(with sufficient precision)

Algorithm MinHash(𝑥!, 𝑥", … , 𝑥#)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥/)}

return round !
)*+
− 1



MinHash Example

Stream:    13,      25,       19,     25,       19,      19

Hashes: 0.51,  0.26,  0.79,  0.26,  0.79,  0.79

Poll:  pollev.com/rachel312
a.  1
b.  3
c.  5
d.  No	idea

What does 
MinHash return?



MinHash Example II

Stream:    11,     34,     89,     11,      89,     23

Hashes:  0.5,  0.21,  0.94,   0.5,  0.94,   0.1

Output is !
8.!
− 1 = 9 Clearly, not a very good answer!

Not unlikely: 𝑃 ℎ 𝑥 < 0.1 = 0.1 



The MinHash Algorithm – Problem
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Algorithm MinHash(𝑥!, 𝑥", … , 𝑥#)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥/)}

return round !
)*+
− 1

val = min{ℎ(𝑥!), … , ℎ(𝑥")}

But, val is not 𝔼[val]!     
How far is val from 𝔼[val]? 

𝔼[val] =
1

𝑚 + 1

Var(val) ≈
1

𝑚 + 1 %



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use 𝑘 independent hash functions ℎ!, ℎ%, ⋯ ℎ?  

Algorithm MinHash(𝑥!, 𝑥%, … , 𝑥))

val!, … , val@ ← ∞
for 𝑖 = 1 to 𝑁 do

 val! ← min{val!, ℎ!(𝑥A)} , … , val@ ← min{val? , ℎ?(𝑥A)}

val ←
1
𝑘
S
AB!

?

valC

return round !
DEF
− 1

Var val =
1
𝑘

1
𝑚 + 1 "



MinHash and Estimating # of Distinct Elements in Practice

• MinHash in practice:
– One also stores the element that has the minimum hash value for 

each of the 𝑘 hash functions
• Then, just given separate MinHashes for sets 𝐴 and 𝐵, can also estimate

–what fraction of 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵; i.e.,  how similar 𝐴 and 𝐵 are

• Another randomized data structure for distinct elements in practice:
– HyperLoglog   - even more space efficient but doesn’t have                              

                            the set combination properties of MinHash 
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Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
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Why joint distributions?

• Given all of its user’s ratings for different movies, and any
preferences you have expressed, Netflix wants to recommend a new 
movie for you.

• Given a large amount of medical data correlating symptoms and 
personal history with diseases, predict what is ailing a person with a 
particular medical history and set of symptoms.

• Given current traffic, pedestrian locations, weather, lights, etc. decide 
whether a self-driving car should slow down or come to a stop

16



Review Cartesian Product
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Definition. Let 𝐴 and 𝐵 be sets. The Cartesian product of 𝐴 and 𝐵 is 
denoted

 𝐴×𝐵 = 𝑎, 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

Example.
1,2,3 × 4, 5 = 1, 4 , 1,5 , 2,4 , 2,5 , 3, 4 , (3,5)

If 𝐴 and 𝐵 are finite sets, then 𝐴×𝐵 = 𝐴 ⋅ 𝐵 .

The sets don’t need to be finite!  You can have ℝ×ℝ (often denoted ℝ!)



Joint PMFs and Joint Range
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Definition. Let 𝑋 and 𝑌 be discrete random variables. The Joint PMF  
of 𝑋 and 𝑌 is

 𝑝G,H(𝑎, 𝑏) = 𝑃(𝑋 = 𝑎, 𝑌 = 𝑏)

Definition. The joint range of 𝑝G,H  is

 ΩG,H = 𝑐, 𝑑 ∶ 𝑝G,H 𝑐, 𝑑 > 0 ⊆ ΩG×ΩH

Note that

A
",$ ∈&!,#

𝑝',( 𝑠, 𝑡 = 1



Example – Weird Dice

Suppose I roll two fair 4-sided die independently. Let 𝑋 be the value of the first die, 
and 𝑌 be the value of the second die. 

Ω' = 1,2,3,4  and Ω( = {1,2,3,4}

In this problem, the joint PMF is if

𝑝',( 𝑥, 𝑦 = 	 M1/16 if 𝑥, 𝑦 ∈ Ω',(	
0	 otherwise 

and the joint range is (since all combinations have non-zero probability)
Ω',( = Ω'×	Ω* 
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X\Y 1 2 3 4

1 1/16 1/16 1/16 1/16

2 1/16 1/16 1/16 1/16

3 1/16 1/16 1/16 1/16

4 1/16 1/16 1/16 1/16



Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let 𝑋 be the value of the first die, 
and 𝑌 be the value of the second die.  Let 𝑈 = min 𝑋, 𝑌  and 𝑊 = max(𝑋, 𝑌)
Ω+ = 1,2,3,4  and Ω, = {1,2,3,4}

Ω+,, = 𝑢,𝑤 ∈ Ω+×Ω,: 𝑢 ≤ 𝑤	 ≠ Ω+×Ω, 

Poll:  pollev.com/rachel312
What is 𝑝+,, 1, 3 = 𝑃(𝑈 = 1,𝑊 = 3) ?
a. 	1/16
b. 	2/16
c.  1/2
d. 	Not	sure

U\W 1 2 3 4

1

2

3

4



Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let 𝑋 be the value of the first die, 
and 𝑌 be the value of the second die. Let 𝑈 = min 𝑋, 𝑌  and 𝑊 = max(𝑋, 𝑌)
Ω+ = 1,2,3,4  and Ω, = {1,2,3,4}

Ω+,, = 𝑢,𝑤 ∈ Ω+×Ω,: 𝑢 ≤ 𝑤	 ≠ Ω+×Ω, 

The joint PMF 𝑝+,, 𝑢,𝑤 = 𝑃(𝑈 = 𝑢,𝑊 = 𝑤) is

𝑝#,% 𝑢,𝑤 = 	'
2/16	 if 𝑢,𝑤 ∈ Ω#×Ω% 	where 𝑤 > 𝑢
1/16	 if 𝑢,𝑤 ∈ Ω#×Ω% 	where 𝑤 = 𝑢
0	 otherwise 

U\W 1 2 3 4

1 1/16 2/16 2/16 2/16

2 0 1/16 2/16 2/16

3 0 0 1/16 2/16

4 0 0 0 1/16



Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let 𝑋 be the value of the first die, 
and 𝑌 be the value of the second die.  Let 𝑈 = min 𝑋, 𝑌  and 𝑊 = max(𝑋, 𝑌)

Suppose we didn’t know how to compute 𝑃(𝑈 = 𝑢) directly. Can we figure it out if 
we know 𝑝+,,(𝑢, 𝑤)?

U\W 1 2 3 4

1 1/16 2/16 2/16 2/16

2 0 1/16 2/16 2/16

3 0 0 1/16 2/16

4 0 0 0 1/16

𝑝+ 1 =

𝑝+ 2 =

𝑝+ 3 =

𝑝+ 4 =

Just apply LTP over the possible values of 𝑊:

7/16

5/16

3/16

1/16



Marginal PMF
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Definition. Let 𝑋 and 𝑌 be discrete random variables and 𝑝G,H 𝑎, 𝑏  
their joint PMF. The marginal PMF  of 𝑋

𝑝G(𝑎) = S
I∈K!

𝑝G,H(𝑎, 𝑏)

Similarly,  𝑝((𝑏) = ∑-∈&! 𝑝',((𝑎, 𝑏) 



Continuous distributions on ℝ×ℝ

24

Definition. The joint probability density function (PDF)  of continuous 
random variables 𝑋 and 𝑌 is a function 𝑓G,H  defined on ℝ×ℝ such that 
•  𝑓G,H 𝑥, 𝑦 ≥ 0 for all 𝑥, 𝑦 ∈ ℝ

•  ∫LM
M ∫LM

M 𝑓G,H 𝑥, 𝑦 d𝑥	d𝑦 = 1

for 𝐴 ⊆ ℝ×ℝ the probability that 𝑋, 𝑌 ∈ 𝐴 is ∬N 𝑓G,H 𝑥, 𝑦 	d𝑥d𝑦
The  (marginal) PDFs 𝑓G  and 𝑓H  are given by

–  𝑓G 𝑥 = ∫LM
M 𝑓G,H 𝑥, 𝑦 	d𝑦

–  𝑓H 𝑦 = ∫LM
M 𝑓G,H 𝑥, 𝑦 	d𝑥



Independence and joint distributions

25

Definition. Continuous random variables 𝑋 and 𝑌 are independent iff
•  𝑓G,H 𝑥, 𝑦 = 𝑓G 𝑥 ⋅ 𝑓H(𝑦) for all 𝑥, 𝑦 ∈ ℝ

Definition. Discrete random variables 𝑋 and 𝑌 are independent iff
•  𝑝G,H 𝑥, 𝑦 = 𝑝G 𝑥 ⋅ 𝑝H(𝑦) for all 𝑥 ∈ ΩG , 𝑦 ∈ ΩH



Example – Uniform distribution on a unit disk
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1

1

-1

-1

0

This is a disk of radius 1 which has area 𝜋

Suppose that a pair of random variables (𝑋, 𝑌)	is chosen uniformly 
from the set of real points (𝑥, 𝑦)	such that 𝑥! + y! ≤ 1

𝑓',( 𝑥, 𝑦 = m
1
𝜋
	 if	𝑥! + 𝑦! ≤ 1

0	 otherwise	

Poll:  pollev.com/rachel312
Are 𝑋 and 𝑌 independent?
a. Yes
b. No

𝑓' 𝑥 = q
. /.0$

/.0$ 1
𝜋
d𝑦

= 2 1 − 𝑥!/𝜋



Joint Expectation
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Definition. Let 𝑋 and 𝑌 be discrete random variables and 𝑝G,H 𝑎, 𝑏  
their joint PMF. The expectation of some function 𝑔(𝑥, 𝑦) with inputs 
𝑋 and 𝑌

𝔼[𝑔 𝑋, 𝑌 ] = S
O∈K"

S
I∈K!

𝑔 𝑎, 𝑏 ⋅ 𝑝G,H (𝑎, 𝑏)  



Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance

28



Conditional Expectation

29

Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = S
P	 ∈	K"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Notes:
• Can be phrased as a “random variable version”

𝔼 𝑋 	𝑌 = 𝑦]

• Linearity of expectation still applies here
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐	 𝐴] = 𝑎	𝔼 𝑋	 𝐴] + 𝑏	𝔼 𝑌	 𝐴] + 𝑐



Law of Total Expectation

30

Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴!, … , 𝐴R partition the sample space. Then,

𝔼[𝑋] = S
AB!

R

𝔼 𝑋	 𝐴A ⋅ 𝑃(𝐴A)

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝔼[𝑋] = S
S	∈K!

𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑃(𝑌 = 𝑦)



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

𝔼 𝑋 = $
!	∈$&

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

	 = $
!	∈$&

𝑥 ⋅$
%&'

(

𝑃 𝑋 = 𝑥	 𝐴%) ⋅ 𝑃(𝐴%)	

	 = $
%&'

(

𝑃 𝐴% $
!∈$&

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴%)

	 =$
%&'

(

𝑃 𝐴% ⋅ 𝔼 𝑋 𝐴%]

31

(by LTP)

(change order of sums)

(def of cond. expect.)



Example – Flipping a Random Number of Coins

Suppose someone gave us 𝑌 ∼ Poi(5) fair coins and we wanted to compute the 
expected number of heads 𝑋 from flipping those coins.

By the Law of Total Expectation

𝔼 𝑋 =A
123

4

𝔼 𝑋	 𝑌 = 𝑖] ⋅ 𝑃 𝑌 = 𝑖 =A
123

4
𝑖
2
⋅ 𝑃(𝑌 = 𝑖)

	 =
1
2
⋅A
123

4

𝑖 ⋅ 𝑃 𝑌 = 𝑖

                                                                                                  = /
!
⋅ 𝔼 𝑌 = /

!
⋅ 5 = 2.5
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Example – Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step 𝑖 
your computer will fail with probability 𝑝 (independently of other steps). 
Let 𝑋 be the number of steps it takes your computer to fail. 
What is 𝔼[𝑋]?

33

Let 𝑌 be the indicator random variable for the event of failure in step 1

Then by LTE,  𝔼 𝑋 = 𝔼 𝑋	 𝑌 = 1] ⋅ 𝑃 𝑌 = 1 + 𝔼 𝑋	 𝑌 = 0] ⋅ 𝑃 𝑌 = 0
                                     = 1 ⋅ 𝑝 + 𝔼 𝑋	 𝑌 = 0] ⋅ 1 − 𝑝
                                     = 𝑝 + 1 + 𝔼 𝑋 ⋅ 1 − 𝑝     since if 𝑌 = 0 experiment    

                                                         starting at step 2 looks like   
                                                                                            original experiment

Solving we get 𝔼 𝑋 = 1/𝑝



Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
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Conditional Expectation again…

38

Definition. Let 𝑋 be a discrete random variable; then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = S
P	 ∈	K"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Therefore for 𝑋 and 𝑌 discrete random variables, the conditional 
expectation of 𝑋	given 𝑌 = 𝑦	 is

𝔼 𝑋	 𝑌 = 𝑦] = S
P	 ∈	K"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = S
P	 ∈	K"

𝑥 ⋅ 𝑝G,H(𝑥|𝑦)

𝑝G|H 𝑥|𝑦 = 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) =
𝑝G,H(𝑥, 𝑦)
𝑝H(𝑦)

where we define

= S
P	 ∈	K"

𝑥 ⋅ 𝑝G|H(𝑥|𝑦)



Conditional Expectation – Discrete & Continuous

39

𝑝G|H 𝑥|𝑦 =
𝑝G,H(𝑥, 𝑦)
𝑝H(𝑦)

Discrete:  Conditional PMF:

Continuous: Conditional PDF: 𝑓G|H 𝑥|𝑦 =
𝑓G,H(𝑥, 𝑦)
𝑓H(𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = S
P	 ∈	K"

𝑥 ⋅ 𝑝G|H(𝑥|𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = m
LM

M
𝑥 ⋅ 𝑓G|H 𝑥 𝑦 	𝑑𝑥	



Law of Total Expectation - continuous

40

Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴!, … , 𝐴R partition the sample space. Then,

𝔼[𝑋] = S
AB!

R

𝔼 𝑋	 𝐴A ⋅ 𝑃(𝐴A)

Law of Total Expectation (random variable version). Let 𝑋 and 𝑌 be 
continuous random variables. Then,

𝔼[𝑋] = m
LM

M
𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑓H 𝑦 	 𝑑𝑦



Using LTE for Continuous RVs

Suppose that we first choose 𝑌 ∼ 𝐸𝑥𝑝(1/2) and then choose 
𝑋 ∼ 𝐸𝑥𝑝 𝑌 .      What is 𝔼 𝑋 ?

𝑓z|| 𝑥|𝑦 = 𝑦	𝑒}~/�

41

PDF for 𝐸𝑥𝑝 𝜆 	is M𝜆𝑒
.50 𝑥 ≥ 0
0 o.w.

 

Expectation is 1/𝜆

𝔼 𝑋	 𝑌 = 𝑦] = m
LM

M
𝑥 ⋅ 𝑓G|H 𝑥 𝑦 	𝑑𝑥 = m

LM

M
𝑥 ⋅ 𝑦	𝑒LP/S𝑑𝑥

𝑦 is fixed here

𝔼[𝑋] = m
LM

M
𝔼 𝑋	 𝑌 = 𝑦]	𝑓H(𝑦)	𝑑𝑦 = m

LM

M
𝑦 ⋅ 2	𝑒LS/%𝑑𝑥 = 	 2

= 𝑦



Reference Sheet (with continuous RVs)
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Brain Break



Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
• Covariance
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Covariance:  How correlated are 𝑋 and 𝑌? 

Recall that if 𝑋 and 𝑌 are independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼[𝑌]

Definition:  The covariance of random variables 𝑋 and 𝑌, 
Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.
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Two Covariance examples:

46

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Suppose 𝑋 ∼ Bernoulli(𝑝)

If random variable 𝑌 = 𝑋 then
                       Cov 𝑋, 𝑌 = 𝔼 𝑋% − 𝔼 𝑋 % = Var 𝑋 = 𝑝(1 − 𝑝)

If random variable 𝑍 = −𝑋 then
                       Cov 𝑋, 𝑍 = 𝔼 𝑋𝑍 − 𝔼 𝑋 ⋅ 𝔼 𝑍
                                 = 𝔼 −𝑋% − 𝔼 𝑋 ⋅ 𝔼 −𝑋
                                       = −𝔼 𝑋% + 𝔼 𝑋 % = −Var 𝑋 = −𝑝(1 − 𝑝)


