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Lecture 19: Joint Distributions



Stream Model - Problem Setup

Input: sequence (aka. “stream”) of N element@xz, v Xy
from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to
right pass, where:
— Elements processed in real time

— Can’t store the full data = use minimal amount of storage while
maintaining working “summary”



Today: Counting distinct elements

327 127 14) 32'7 7’ 12’ 32" 77 32’) 12’

Input: sequence (aka. “stream”) of N elements x4, x5, ..., Xy
from a known universe U (e.g., 8-byte integers).

Goal: count number of distinct elements

Constraint: Elements processed in real time

— use minimal amount of storage while maintaining working
“summary”’



Detour — Min of I.I.D. Uniforms

SN
Unif(0,1) (iid) where do we expect the points to end up?
In general, E@] ﬁﬁ —

E[min(¥,)] = —= -

1+1
m=1 X 1
“E[min(¥;, V)] = —== =
m =2 X X
®E[min(Y;, -, Y)] = =+ 1
m=4

M-t|



Distinct Elements — Hashing into [0,1] Yt Xz
O niy). hley
'Hash function h: U - 5

Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

X1 =5 X, = 2 X3 = 27 X4 = 35 Xg =
1S h(2) h(27) h(35) h(4)
5 distinct elements
\
— 5i.i.d. RVs h(xy), ..., h(x5) ~ Unif(0,1) )
— E[min{h(xy), ..., h(xs)}] = @% =
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Distinct Elements — Hashing into [0, 1]

____________________________________________________________________________________________________________________________________________________________________

‘Hash function h: U — [0,1] |
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

X1 =5 X, = 2 X3 = 27 X4 =5 Xz =4
h(5) h(2) h(27) h(5) h(4)

4 distinct elements

= 4 i.i.d. RVs h(xy), h(xy), h(x3), h(xs) ~ Unif(0,1) and h(x;) = h(x,)

= E[min{h(xy), ..., h(x5)}] = E[min{h(x,), h(xz), h(x3), h(x5)}]

1
o441
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Distinct Elements — Hashing into [0, 1] /l&#’“_
lL_..0

--------------------------------------------------------------------------------------------------------------------------------- e e S

‘Hash function h: U — [0,1] € |
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

X1, X9, wen, gc@contains_m distinct elements

!

h(xy), h(xy), ..., h(xy) contains@i.i.d. rvs ~ Unif(0,1)
l and N — m repeats

_ 1 1
E[min{h(x;), ..., h(xy)}] = — 4—@%/ ?in{h(xl), -""l@_ﬂ; 1

D




1

TheMn%I:Q? Algorithm - Idea ™ =g Sy =1

1. Coq{:pute(val = min{h(x,), %

2. @that val = E[min{h(x,), .. h(xN)}r

3. Output round (— = 1)

val




The MinHash Algorithm - Implementation

Algorithm MinHash(xq, x5, ..., Xy)

val « o \
(for I =1toN do Memory cost = just remember val

: / (with sufficient precision)
val < min{val, h(x;)}

1
return round (v:l — 1)
e = —




MinHash Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, @0.79, 0.79

What does Z ;
MinHash return? .
| d Noidea ]
ROM ' ( O- Md \2
<



MinHash Example Il

Stream: 11, 34, 89, 11, 89, @

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

—

. A
Output |@ Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1




The MinHash Algorithm - Problem \

Algorithm MinHash(xq, x5, ..., Xy)

val « o ]

fori =1toN do
But, val is not E[val]!

val « min{val, h(x;)}
! / How far is val from E[val]?
return round (— — 1)
1

val

1
m+1

val = min{h(x,), ..., h(xy)} [E[val] =

S 4_——-_‘
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How can we reduce the variance?

fny) = min(h6g- h n ))

Idea: Repetition to reduce variancg!
Use k independent hash functions/hl, h?, - hq

Algorithm MinHash(xq, x5, ..., Xy)
(vall,)... Avaly ¥ o
S
fori = 1toNdo
__) min{val;, h1(x;)}, ..., val, < min{val,, h*(x;)}

val; Y
Z {}%}Uar(\ﬂ){\ 1

return round (L — 1) Tt

val




MinHash and Estimating # of Distinct Elements in Practice

* MinHash in practice:

— One also stores the element that has the minimum hash value for
each of the k hash functions
* Then, just given separate MinHashes for sets 4 and B, can also estimate

—_—

— what fraction oftA U Bjjsin A N B;i.e., how similar A and B are

* Another randomized data structure for distinct elements in practice:

— HyperLoglog -even more space efficient but doesn’t have
the set combination properties of MinHash

14



Agenda

e Joint Distributions @
— Cartesian Products

— Joint PMFs and Joint Range
— Marginal Distribution

* Conditional Expectation and Law of Total Expectation
* Conditional expectation and LTE for continuous RVs
* Covariance
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Why joint distributions?

* Given all of its user’s ratings for different movies, and any
preferences you have expressed, Netflix wants to recommend a new
movie for you.

* Given a large amount of medical data correlating symptoms and
personal history with diseases, predict what is ailing a person with a
particular medical history and set of symptoms.

* Given current traffic, pedestrian locations, weather, lights, etc. decide
whether a self-driving car should slow down or come to a stop

16



Cartesian Product > W = (4 THWT

____________________________________________________________________________________________________________________________________________________________________

Definition. Let A and B be sets. The Cartesian product of A and B is
~ denoted

AXB ={(a,b) :a € A,b € B}

CExample.
' {1,2,3}x{4,5} = {(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)}

If A and B are finite sets, then |AXB| = |A| - |B].

The sets don’t need to be finite! You can have RxR (often denoted R?)
17



Definition. The joint range of py y is
‘Q‘XY — {(C, d) . pX,Y(CI d) > O} C ‘Q‘XX‘Q‘Y

pX,Y (S, t) — l
(S,t)E.QX’
== - 18

Note that




Example — Weird Dice ﬁ

Suppose | roll two fair 4-sided die independently. Le@e the value of the first die,
an@e the value of the second die.

w1 2 3 g

(QF (1,234} andQy)= {1,2,3,4)

1 116 | 116 | 116 | 116
In this problem, the joint PMF is if 2| 116 | 116 | 1/16 | 1/16
1/16 ifx,y €Q 3 116 | 116 | 116 | 1/16

PX,Y(?Q_}’) = {'/_‘ h - ———
— 0 otherwise 4 116 | 116 | 116 | 116

and the joint range is (since all combinations have non-zero probability)

QX,Y = .Q.&X .Q.y @
19



Example — Weirder Dice ﬁ

Sup?ose | roll two fair 4-sided die independently. L@ve the value of the first die,

an e the value of the second die. Let U = min(X,Y) and W = max(X,Y)
Qy ={1,2,3,4}and Q,, = {1,2,3,4} S
Quw F {(w,w) € QuxQpiu S w}# QyXQy
Poll: pollev.com/rachel312 ow 1 2 3
‘Whatispyw(1,3) =PU=1W=3)? | 1
a. 6 s
. 1/2 o)y '
:d. Notsure 3
4




Example — Weirder Dice

A

Suppose | roll two fair 4-sided die independently. Let X be the value of the first die,
and Y be the value of the second die. Let U = min(X,Y) and W = max(X,Y)

Oy = {1,2,3,4} and Oy = {1,2,3,4}
QU,W = {(u, W) (S QUX.Q.W:U < W} - QUXQW

The joint PMF pyw(u,w) = P(U = u,W = w) s
[j/lf) (/L(’j)

2/16 if (u,w) € QyxQy wherew > u
puwww) =4 1/16 if (u,w) € QyxQ,, wherew = u
0 otherwise T
(/L\ / ‘L\ )
o2

1 2 3 4
1/16\ 216 | 2/16 | 2/16
0 1 2/16 | 2/16
0 0 %6\ 2/16
0 0 0 %




Example — Weirder Dice

Suppose | roll two fair 4-sided die independently. Let X be the value of the first die,

A

and Y be the value of the second die. Let U = min(X,Y) and W = max(X,Y)

Suppose we didn’t know how to computeIP(U =

we know py (1, w)?
.

Just apply LTP over the possible values of /:

py(1) =7/16

(P( L=V ) pu(2) =5/16
jﬁwz,wﬂ> py(3) =3/16
zl py(4) =1/16

oAzt

L

uﬁrectly Can we figure it out if

~7

uw A4 2 3 4
1] 116 216 | 2/16 \2/16
6 0 1116 | 2/16 2@
| 3 0 0 41;6 2/16
4 O 0 0 116




Marginal PMF

_____________________________________________________________________________________________________________________________________________________________________

Defmltlon Let X and Y be discrete random variables and py v (a, b)
thelr]omt PMF. The marginal P

Px (.Q!) =

—=

Similarly, py(b) = Xqeq, Px,y(a, b)

23



Continuous distributions on RxR

(v.y)& IRxK

________________________________________________________________________________________________________________________________________________________________________

~ Definition. The joint probability density function (PDF) of continuous

random variables X and Y is a functio defined on RXR such that
fxy(x,y) = Oforallx,y € R ﬁ
[ fuaGy)drdy = 1 o L 78l

bC 4

L:(io@e probability that (s II, foy(y) dxdy

tThg (marginal)PDFs fy and f; are given by

%*
- fx@ f fxy@l’) (L = Zén Vx;‘(("(* ‘5)
- fry) = f fxy(x,y) dx Jeny
Ay Sy R Ry A T

=02
Q




Independence and joint distributions

________________________________________________________________________________________________________________________________________________________________________

Definition. Discrete random variables X and Y are independent iff

o pxy(6y) =px(x) - py(y) forallx € Oy, y € Qy

________________________________________________________________________________________________________________________________________________________________________

Definition. Continuous random variables X and Y are independent iff
* fxy(,y) = fx(x) - fy(y) forallx,y € R

25



Example - Uniform distribution on a unit disk

Suppose that a pair of random variables (X, Y) is chosen uniformly
from the set of real points (x,y) such that x? + y? < 1

1
i This is a disk of radius 1 which has area
-1 i 1 1
______ .?------- - . 2 2 <
: fxy(6,y) =4 1 L
i 0 otherwise
-1
 Poll: pollev.com/rachel312 N NE) :j ) ldy
' Are X and Y independent? | X 12T
'a. Yes ;
'b. No =2\/1—x2/7r

________________________________________________________________________
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Joint Expectation

Definition. Let X and Y be discrete random variables and py y(a, b)
~ their joint PMF. The expectation of some function g(x, y) with inputs
XandY

ElgX, V1= ) > g(@h) pry (@h)
a€lly beQly

27



Agenda

* Joint Distributions
— Cartesian Products
— Joint PMFs and Joint Range
— Marginal Distribution

* Conditional Expectation and Law of Total Expectation &
* Conditional expectation and LTE for continuous RVs
* Covariance

28



Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
- expectation of X given event A is

x €0y
Notes:
* (Can be phrased as a “random variable version”
E[X]Y = y]

 Linearity of expectation still applies here

ElaX + bY + c|A] = a E|X |A]+ b E[Y | A] + ¢ 2



Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
~and let events A4, ..., A;, partition the sample space. Then,

E[X] = ) EX|4]-P(4)
=1

~Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

E[X]= ) EIX|Y =yl P(Y =)
y €Qy



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

E[X] = z x-P(X = x)

x EQx
by LTP
z ZP(X = x |4;) - P(4) ( )
XE.QX
Z P(A;) z x-P(X =x|4) (change order of sums)
— XENyx

(def of cond. expect.)

Z (4) - E[X|A;]
i=1

31



Example - Flipping a Random Number of Coins

Suppose someone gave us Y ~ Poi(5) fair coins and we wanted to compute the
expected number of heads X from flipping those coins.

By the Law of Total Expectation

i)=z;—-P(Y=i)

E[X] =ZIE[X|Y= i1-P(Y
=0

32



Example — Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i
your computer will fail with probability p (independently of other steps).

Let X be the number of steps it takes your computer to fail.
What is E[X]?

Let Y be the indicator random variable for the event of failure in step 1

Then by LTE, E[X]| =E[X|Y =1]-P(Y =1)+E[X|Y =0]-P(Y =0)
=1-p+EX|Y=0]-(1-p)
=p+ A+ E[X]: (1—-p) since if Y = 0 experiment
starting at step 2 looks like
original experiment

Solvingwe get E[X]| = 1/p

33



Agenda

* Joint Distributions
— Cartesian Products
— Joint PMFs and Joint Range
— Marginal Distribution

* Conditional Expectation and Law of Total Expectation
* Conditional expectation and LTE for continuous RVs
* Covariance
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Conditional Expectation again...

Definition. Let X be a discrete random variable; then the conditional
~ expectation of X given event A is |

________________________________________________________________________________________________________________________________________________________________

Therefore for X and Y discrete random variables, the conditional
expectation of X givenY = y is

EX 1Y =y]= ) xPA=x|Y=y)= Y x pay(xly)

X €Qyx x €Qx

Pxy(X,y)
Py (¥)

where we define pxy(x|y) =PX =x|Y =y) =



Conditional Expectation - Discrete & Continuous

Pxy(x,y)
Py (¥)

Discrete: Conditional PMF: pX|Y(X|}’) =

Conditional Expectation: E[X |Y = y] = z X - pX|y(x|y)

XE.QX

fxy(x,y)
fr)

Continuous: Conditional PDF:  fx|y(x|y) =

Conditional Expectation: E[X |V = y] = f x - fxy(xly) dx

39



Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable
~and let events A4, ..., A;, partition the sample space. Then,

E[X] = ) EIX | A;] P(4)
=1

_____________________________________________________________________________________________________________________________________________________________________

Law of Total Expectation (random variable version). Let X and Y be
- continuous random variables. Then,

E[X] = f EIX Y =y]- £, () dy

_____________________________________________________________________________________________________________________________________________________________________



) . Jle™ x>0
Using LTE for Continuous RVs Rl L 'S{ 0 "
Expectationis 1/4

Suppose that we first choose Y ~ Exp(1/2) and then
X ~Exp(Y). Whatis E[X]?

friy (xly) = y e ™7

y is fixed here
00 /

IE[XIY=y]=J x'fxw(xly)dx=j x-ye *Vdx =y

— 00

co

E[X]=f E[X|Y=y]fy<y)dy=j y 2e 2y = 2

41



Reference S

heet (with continuous RVs)

Discrete Continuous

Joint PMF/PDF pxy(x,y) =PX =xY =y) fxy(x,y) # PX =x,Y =y)

; X [V
Joint CDF Fyy(x,y) = ZZPX‘Y(t' s) Fyy(x,y) = f j fxy(t, s)dsdt

tsx s<y =00 =00

Normalization ZZ pey(1,y) =1 j J Foy(%,y)dxdy = 1
Marginal ”
PMFg/ PDF px(x) = Z Pxy(x,y) fr(x) = f_ Oofx,y(x,y)dy
Expectation E[g(X,Y)] Zzg(x WoxyXY) | E[g(X,Y)] = j j g, ) fyy (x, y)dxdy
Conditional . Pxy(X,y) ol | 9= fxy(x,)
PME/PDF XY oy () S fr»)
Conditional - %
Expectation EIX|Y=y]= le’xw(x | ¥) EX|Y=y]= f_wfoIY(x | y)dx
IndePendence Vx, ¥, pxy (%, y) = px(X)py (¥) VXY, fry(y) = fx(O)fy ()




Brain Break




Agenda

* Joint Distributions
— Cartesian Products
— Joint PMFs and Joint Range
— Marginal Distribution

* Conditional Expectation and Law of Total Expectation
* Conditional expectation and LTE for continuous RVs
* Covariance @
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Covariance: How correlated are X and Y?

Recall that if X and Y are independent, E|XY| = E|X]| - E[Y]

Definition: The covariance of random variables X and Y,
Cov(X,Y) = E[XY] — E[X] - E[Y]

Unlike variance, covariance can be positive or negative. It has
has value 0 if the random variables are independent.

45



, Cov(X,Y) = E[XY] — E[X] - E[Y]
Two Covariance examples:

Suppose X ~ Bernoulli(p)

If random variable Y = X then
Cov(X,Y) = E[X?] — E[X]? = Var(X) = p(1 — p)

If random variable Z = —X then
Cov(X,Z) = [XZ] E[X] - E[Z]
= E[-X?] — E[X] - E[—X]
= —E[X*] + E[X]?* = —Var(X) = —p(1 — p)
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