CSE 312

Foundations of Computing II

Lecture 19: Joint Distributions

Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs
- Covariance

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop

Review Cartesian Product

Definition. Let *A* and *B* be sets. The **Cartesian product** of *A* and *B* is denoted

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Example.

$$\{1,2,3\}\times\{4,5\} = \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$$

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^2)

Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega_{X,Y} = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Note that

$$\sum_{(s,t)\in\Omega_{X,Y}}p_{X,Y}(s,t)=1$$

Example – Weird Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.

$$\Omega_X = \{1,2,3,4\} \text{ and } \Omega_Y = \{1,2,3,4\}$$

In this problem, the joint PMF is if

$$p_{X,Y}(x,y) = \begin{cases} 1/16 & \text{if } x,y \in \Omega_{X,Y} \\ 0 & \text{otherwise} \end{cases}$$

X\Y	1	2	3	4
1	1/16	1/16	1/16	1/16
2	1/16	1/16	1/16	1/16
3	1/16	1/16	1/16	1/16
4	1/16	1/16	1/16	1/16

and the joint range is (since all combinations have non-zero probability)

$$\Omega_{X,Y} = \Omega_X \times \Omega_Y$$

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$$\Omega_U = \{1,2,3,4\}$$
 and $\Omega_W = \{1,2,3,4\}$

$$\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \leq w \} \neq \Omega_U \times \Omega_W$$

Poll: pollev.com/rachel312

What is $p_{U,W}(1,3) = P(U = 1, W = 3)$?

- a. 1/16
- b. 2/16
- c. 1/2
- d. Not sure

U\W	1	2	3	4
1				
2				
3				
4				

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$$\Omega_U = \{1,2,3,4\}$$
 and $\Omega_W = \{1,2,3,4\}$

$$\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \leq w \} \neq \Omega_U \times \Omega_W$$

The joint PMF
$$p_{U,W}(u, w) = P(U = u, W = w)$$
 is

$$p_{U,W}(u,w) = \begin{cases} 2/16 & \text{if } (u,w) \in \Omega_U \times \Omega_W \text{ where } w > u \\ 1/16 & \text{if } (u,w) \in \Omega_U \times \Omega_W \text{ where } w = u \\ 0 & \text{otherwise} \end{cases}$$

U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Suppose we didn't know how to compute P(U=u) directly. Can we figure it out if we know $p_{U,W}(u,w)$?

Just apply LTP over the possible values of W:

$$p_U(1) = 7/16$$

 $p_U(2) = 5/16$
 $p_U(3) = 3/16$
 $p_U(4) = 1/16$

U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The marginal PMF of X

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, $p_Y(b) = \sum_{a \in \Omega_X} p_{X,Y}(a,b)$

Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The **joint probability density function (PDF)** of continuous random variables X and Y is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

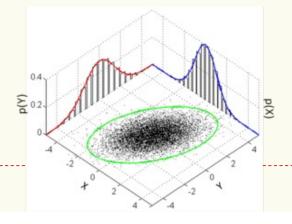
- $f_{X,Y}(x,y) \ge 0$ for all $x,y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) dxdy$

The (marginal) PDFs f_X and f_Y are given by

$$- f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

$$- f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$$



Independence and joint distributions

Definition. Discrete random variables *X* and *Y* are **independent** iff

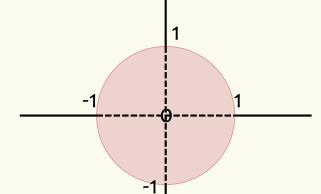
• $p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$ for all $x \in \Omega_X, y \in \Omega_Y$

Definition. Continuous random variables *X* and *Y* are **independent** iff

• $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for all $x, y \in \mathbb{R}$

Example – Uniform distribution on a unit disk

Suppose that a pair of random variables (X, Y) is chosen uniformly from the set of real points (x, y) such that $x^2 + y^2 \le 1$



This is a disk of radius 1 which has area π

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi} & \text{if } x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}$$

Poll: pollev.com/rachel312

Are *X* and *Y* independent?

- a. Yes
- b. No

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= 2\sqrt{1-x^2}/\pi$$

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The **expectation** of some function g(x,y) with inputs X and Y

$$\mathbb{E}[g(X,Y)] = \sum_{a \in \Omega_X} \sum_{b \in \Omega_Y} g(a,b) \cdot p_{X,Y}(a,b)$$

Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs
- Covariance

Conditional Expectation

Definition. Let X be a discrete random variable then the **conditional expectation** of X given event A is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Notes:

Can be phrased as a "random variable version"

$$\mathbb{E}[X|Y=y]$$

Linearity of expectation still applies here

$$\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \dots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)$$

$$= \sum_{x \in \Omega_X} x \cdot \sum_{i=1}^n P(X = x \mid A_i) \cdot P(A_i)$$

$$= \sum_{i=1}^n P(A_i) \sum_{x \in \Omega_X} x \cdot P(X = x \mid A_i)$$

$$= \sum_{i=1}^n P(A_i) \cdot \mathbb{E}[X \mid A_i]$$
(change order of sums)
$$= \sum_{i=1}^n P(A_i) \cdot \mathbb{E}[X \mid A_i]$$
(def of cond. expect.)

Example – Flipping a Random Number of Coins

Suppose someone gave us $Y \sim \text{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$\mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{E}[X \mid Y = i] \cdot P(Y = i) = \sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y = i)$$
$$= \frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y = i)$$
$$= \frac{1}{2} \cdot \mathbb{E}[Y] = \frac{1}{2} \cdot 5 = 2.5$$

Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps).

Let X be the number of steps it takes your computer to fail.

What is $\mathbb{E}[X]$?

Let Y be the indicator random variable for the event of failure in step 1

```
Then by LTE, \mathbb{E}[X] = \mathbb{E}[X \mid Y = 1] \cdot P(Y = 1) + \mathbb{E}[X \mid Y = 0] \cdot P(Y = 0)
= 1 \cdot p + \mathbb{E}[X \mid Y = 0] \cdot (1 - p)
= p + (1 + \mathbb{E}[X]) \cdot (1 - p) \qquad \text{since if } Y = 0 \text{ experiment}
\text{starting at step 2 looks like}
\text{original experiment}
```

Solving we get $\mathbb{E}[X] = 1/p$

Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs
- Covariance

Conditional Expectation again...

Definition. Let X be a discrete random variable; then the **conditional expectation** of X given event A is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Therefore for X and Y discrete random variables, the conditional expectation of X given Y = y is

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid Y = y) = \sum_{x \in \Omega_X} x \cdot p_{X|Y}(x|y)$$

where we **define**
$$p_{X|Y}(x|y) = P(X = x | Y = y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

Conditional Expectation – Discrete & Continuous

Discrete: Conditional PMF:
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Conditional Expectation:
$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot p_{X|Y}(x|y)$$

Continuous: Conditional PDF:
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Conditional Expectation:
$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \ dx$$

Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \dots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let X and Y be continuous random variables. Then,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_Y(y) \ dy$$

Using LTE for Continuous RVs

PDF for $Exp(\lambda)$ is $\begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{o. w.} \end{cases}$ Expectation is $1/\lambda$

Suppose that we first choose $Y \sim Exp(1/2)$ and then choose $X \sim Exp(Y)$. What is $\mathbb{E}[X]$?

$$f_{X|Y}(x|y) = y e^{-x/y}$$

$$y \text{ is fixed here}$$

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} x \cdot y e^{-x/y} dx = y$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] f_{Y}(y) dy = \int_{-\infty}^{\infty} y \cdot 2 e^{-y/2} dx = 2$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X=x,Y=y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X\mid Y}(x\mid y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X\mid Y}(x\mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x) f_Y(y)$

Brain Break

Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs
- Covariance

Covariance: How correlated are *X* and *Y*?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables X and Y, $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

 $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Two Covariance examples:

Suppose $X \sim \text{Bernoulli}(p)$

If random variable Y = X then

$$Cov(X,Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = Var(X) = p(1-p)$$

If random variable Z = -X then

$$Cov(X,Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]$$

$$= \mathbb{E}[-X^2] - \mathbb{E}[X] \cdot \mathbb{E}[-X]$$

$$= -\mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$$