
CSE 312

Foundations of Computing II
Lecture 20: Tail Bounds -- Markov ,
                       Chebyshev, and Chernoff Bounds
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Review: Joint PMFs and Joint Range

2

Definition. Let 𝑋 and 𝑌 be discrete random variables. The Joint PMF  
of 𝑋 and 𝑌 is

 𝑝!,#(𝑎, 𝑏) = 𝑃(𝑋 = 𝑎, 𝑌 = 𝑏)

Definition. Let 𝑋 and 𝑌 be discrete random variables and 𝑝!,# 𝑎, 𝑏  
their joint PMF. The marginal PMF  of 𝑋

𝑝!(𝑎) = +
$∈&!

𝑝!,#(𝑎, 𝑏)



Review: Continuous distributions on ℝ×ℝ
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Definition. The joint probability density function (PDF)  of continuous 
random variables 𝑋 and 𝑌 is a function 𝑓!,#  defined on ℝ×ℝ such that 
•  𝑓!,# 𝑥, 𝑦 ≥ 0 for all 𝑥, 𝑦 ∈ ℝ

•  ∫'(
( ∫'(

( 𝑓!,# 𝑥, 𝑦 d𝑥	d𝑦 = 1

The  (marginal) PDFs 𝑓!  and 𝑓#  are given by

–  𝑓! 𝑥 = ∫'(
( 𝑓!,# 𝑥, 𝑦 	d𝑦

–  𝑓# 𝑦 = ∫'(
( 𝑓!,# 𝑥, 𝑦 	d𝑥



Independence and joint distributions

4

Definition. Continuous random variables 𝑋 and 𝑌 are independent iff
•  𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 ⋅ 𝑓#(𝑦) for all 𝑥, 𝑦 ∈ ℝ

Definition. Discrete random variables 𝑋 and 𝑌 are independent iff
•  𝑝!,# 𝑥, 𝑦 = 𝑝! 𝑥 ⋅ 𝑝#(𝑦) for all 𝑥 ∈ Ω! , 𝑦 ∈ Ω#



Example – Uniform distribution on a unit disk
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1

1

-1

-1

0

This is a disk of radius 1 which has area 𝜋

Suppose that a pair of random variables (𝑋, 𝑌)	is chosen uniformly 
from the set of real points (𝑥, 𝑦)	such that 𝑥! + y! ≤ 1

𝑓",$ 𝑥, 𝑦 = 0
1
𝜋
	 if	𝑥! + 𝑦! ≤ 1

0	 otherwise	

Poll:  pollev.com/rachel312
Are 𝑋 and 𝑌 independent?
a. Yes
b. No

𝑓" 𝑥 = <
% &%'!

&%'! 1
𝜋
d𝑦

= 2 1 − 𝑥!/𝜋



Joint Expectation
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Definition. Let 𝑋 and 𝑌 be discrete random variables and 𝑝!,# 𝑎, 𝑏  
their joint PMF. The expectation of some function 𝑔(𝑥, 𝑦) with inputs 
𝑋 and 𝑌

𝔼[𝑔 𝑋, 𝑌 ] = +
)∈&"

+
$∈&!

𝑔 𝑎, 𝑏 ⋅ 𝑝!,# (𝑎, 𝑏)  



Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
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Conditional Expectation
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Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = +
*	 ∈	&"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Notes:
• Can be phrased as a “random variable version”

𝔼 𝑋 	𝑌 = 𝑦]

• Linearity of expectation still applies here
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐	 𝐴] = 𝑎	𝔼 𝑋	 𝐴] + 𝑏	𝔼 𝑌	 𝐴] + 𝑐



Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴,, … , 𝐴- partition the sample space. Then,

𝔼[𝑋] = +
./,

-

𝔼 𝑋	 𝐴. ⋅ 𝑃(𝐴.)

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝔼[𝑋] = +
0	∈&!

𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑃(𝑌 = 𝑦)



Proof of Law of Total Expectation (not covered)

Follows from Law of Total Probability and manipulating sums

𝔼 𝑋 = $
!	∈$!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

	 = $
!	∈$!

𝑥 ⋅$
%&'

(

𝑃 𝑋 = 𝑥	 𝐴%) ⋅ 𝑃(𝐴%)	

	 = $
%&'

(

𝑃 𝐴% $
!∈$!

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴%)

	 =$
%&'

(

𝑃 𝐴% ⋅ 𝔼 𝑋 𝐴%]
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(by LTP)

(change order of sums)

(def of cond. expect.)



Example – Flipping a Random Number of Coins

Suppose someone gave us 𝑌 ∼ Poi(5) fair coins and we wanted to compute the 
expected number of heads 𝑋 from flipping those coins.

By the Law of Total Expectation

𝔼 𝑋 =J
()*

+

𝔼 𝑋	 𝑌 = 𝑖] ⋅ 𝑃 𝑌 = 𝑖 =J
()*

+
𝑖
2
⋅ 𝑃(𝑌 = 𝑖)

	 =
1
2
⋅J
()*

+

𝑖 ⋅ 𝑃 𝑌 = 𝑖

                                                                                                  = &
!
⋅ 𝔼 𝑌 = &

!
⋅ 5 = 2.5
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Agenda

• Joint Distributions
– Cartesian Products
– Joint PMFs and Joint Range
– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
• Conditional expectation and LTE for continuous RVs
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Conditional Expectation again…
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Definition. Let 𝑋 be a discrete random variable; then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = +
*	 ∈	&"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Therefore for 𝑋 and 𝑌 discrete random variables, the conditional 
expectation of 𝑋	given 𝑌 = 𝑦	 is

𝔼 𝑋	 𝑌 = 𝑦] = +
*	 ∈	&"

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = +
*	 ∈	&"

𝑥 ⋅ 𝑝!,#(𝑥|𝑦)

𝑝!|# 𝑥|𝑦 = 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) =
𝑝!,#(𝑥, 𝑦)
𝑝#(𝑦)

where we define

= +
*	 ∈	&"

𝑥 ⋅ 𝑝!|#(𝑥|𝑦)



Conditional Expectation – Discrete & Continuous
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𝑝!|# 𝑥|𝑦 =
𝑝!,#(𝑥, 𝑦)
𝑝#(𝑦)

Discrete:  Conditional PMF:

Continuous: Conditional PDF: 𝑓!|# 𝑥|𝑦 =
𝑓!,#(𝑥, 𝑦)
𝑓#(𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = +
*	 ∈	&"

𝑥 ⋅ 𝑝!|#(𝑥|𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = A
'(

(
𝑥 ⋅ 𝑓!|# 𝑥 𝑦 	𝑑𝑥	



Law of Total Expectation - continuous
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴,, … , 𝐴- partition the sample space. Then,

𝔼[𝑋] = +
./,

-

𝔼 𝑋	 𝐴. ⋅ 𝑃(𝐴.)

Law of Total Expectation (random variable version). Let 𝑋 and 𝑌 be 
continuous random variables. Then,

𝔼[𝑋] = A
'(

(
𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑓# 𝑦 	 𝑑𝑦



Using LTE for Continuous RVs

Suppose that we first choose 𝑌 ∼ 𝐸𝑥𝑝(1/2) and then choose 
𝑋 ∼ 𝐸𝑥𝑝 𝑌 .      What is 𝔼 𝑋 ?

𝑓O|Q 𝑥|𝑦 = 𝑦	𝑒RS/T
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PDF for 𝐸𝑥𝑝 𝜆 	is X𝜆𝑒
%,' 𝑥 ≥ 0
0 o.w.

 

Expectation is 1/𝜆

𝔼 𝑋	 𝑌 = 𝑦] = A
'(

(
𝑥 ⋅ 𝑓!|# 𝑥 𝑦 	𝑑𝑥 = A

'(

(
𝑥 ⋅ 𝑦	𝑒'*/0𝑑𝑥

𝑦 is fixed here

𝔼[𝑋] = A
'(

(
𝔼 𝑋	 𝑌 = 𝑦]	𝑓#(𝑦)	𝑑𝑦 = A

'(

(
𝑦 ⋅ 2	𝑒'0/3𝑑𝑥 = 	 2

= 𝑦



Reference Sheet (with continuous RVs)
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Brain Break



Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
• Chernoff-Hoeffding Bound
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its 
mean. Usually statements of the form:

𝑃 𝑋 ≥ 𝑎 ≤ 𝑏
𝑃 |𝑋 − 𝔼 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when
• An approximation that is easy to compute is sufficient
• The process is too complex to analyze exactly

24



Markov’s Inequality 

25

Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,
         𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[!]

7
. 

(Alternative form)  For any 𝑘 ≥ 1 ,
         𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤ ,

8

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof I  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] = +
*

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

= +
*97

𝑥 ⋅ 𝑃(𝑋 = 𝑥) ++
*:7

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥ +
*97

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥ +
*97

𝑡 ⋅ 𝑃(𝑋 = 𝑥) = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0 
whenever 𝑃 𝑋 = 𝑥 ≥ 0      
(𝑋 takes only non-negative 
values)  

Follows by re-arranging terms 
… 



Markov’s Inequality – Proof II  
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Theorem. Let 𝑋 be a (continuous) random variable 
taking only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] = A
;

(
𝑥 ⋅ 𝑓! 𝑥 	d𝑥

= A
7

(
𝑥 ⋅ 𝑓! 𝑥 	d𝑥	 + A

;

7
𝑥 ⋅ 𝑓! 𝑥 	d𝑥

≥ A
7

(
𝑥 ⋅ 𝑓! 𝑥 	d𝑥	

≥ A
7

(
𝑡 ⋅ 𝑓! 𝑥 	d𝑥	 = 𝑡 ⋅ A

7

(
𝑓! 𝑥 	d𝑥	 = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

so  𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[𝑋]/𝑡 as before



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝

28

𝑃 𝑋 = 𝑖 = 1 − 𝑝 .',𝑝 𝔼[𝑋] =
1
𝑝

“𝑋 is the number of times Alice needs to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2/𝑝? 

Markov’s inequality: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ ,
3



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound 𝑝 on the probability of 
seeing a website with 75 or more ads. 
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Poll:  pollev.com/rachel312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable	to	compute

𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘



𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 20 or more ads. 

30

Poll:  pollev.com/rachel312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable	to	compute



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝

31

𝑃 𝑋 = 𝑖 = 1 − 𝑝 .',𝑝 𝔼[𝑋] =
1
𝑝

“𝑋 is the number of times Alice needs to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2/𝑝? 

Markov’s inequality: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ ,
3

Next, we will see that we can get better tail 
bounds using variance



Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
• Chernoff-Hoeffding Bound
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Chebyshev’s Inequality 

33

Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

𝑃 |𝑋 − 𝔼[𝑋]| ≥ 𝑡 ≤ <=> !
7#

. 

Proof: Define 𝑍 = 𝑋 − 𝔼 𝑋 .

𝑃 |𝑍| ≥ 𝑡 = 𝑃 𝑍3 ≥ 𝑡3 ≤
𝔼[𝑍3]
𝑡3

=
𝔼 𝑋 − 𝔼 𝑋 3

𝑡3
=
Var 𝑋
𝑡3

Markov’s inequality (𝑍! ≥ 0)|𝑍| ≥ 𝑡	iff 𝑍! ≥ 𝑡!

Then Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋 3 = 𝔼 𝑍3 . 



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝

34

𝑃 𝑋 = 𝑖 = 1 − 𝑝 .',𝑝 𝔼[𝑋] =
1
𝑝

What is the probability that 𝑋 ≥ 2𝔼 𝑋 = 2/𝑝? 

Markov: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ ,
3

Var 𝑋 =
1 − 𝑝
𝑝3

Chebyshev: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ 𝑃 𝑋 − 𝔼[𝑋] ≥ 𝔼[𝑋] ≤ <=> !
𝔼 ! # = 1 − 𝑝

Better if 𝑝 > 1/2  J 



Example

Suppose that the average number of ads you will see on a 
website is 25 and the standard deviation of the number of ads 
is 4. Give an upper bound on the probability of seeing a 
website with 30 or more ads. 
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Poll: Where does that upper bound 𝑝 lie? 
pollev.com/rachel312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable	to	compute

𝑃 |𝑋 − 𝔼[𝑋]| ≥ 𝑡 ≤ &'( #
%!

. 



Chebyshev’s Inequality – Repeated Experiments
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“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

𝑋 = # of flips until 𝑛 times “heads”

𝑋. = # of flips between (𝑖 − 1)-st and 𝑖-th “heads”  
𝑋 =+

./,

-

𝑋.

Note: 𝑋,, … , 𝑋- are independent and geometric with parameter 𝑝

𝔼 𝑋 = 𝔼 +
./,

-

𝑋. =+
./,

-

𝔼[𝑋.] =
𝑛
𝑝 Var 𝑋 =+

./,

-

Var(𝑋.) =
𝑛 1 − 𝑝

𝑝3



“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

Chebyshev’s Inequality – Coin Flips

37

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2𝑛/𝑝? 

Markov: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ ,
3

Chebyshev: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ 𝑃 𝑋 − 𝔼[𝑋] ≥ 𝔼[𝑋] ≤ <=> !
𝔼 ! # = ,'?

-

Goes to zero as 𝑛 → ∞  J 

𝔼 𝑋 = 𝔼 +
./,

-

𝑋. =+
./,

-

𝔼[𝑋.] =
𝑛
𝑝

Var 𝑋 =+
./,

-

Var(𝑋.) =
𝑛 1 − 𝑝

𝑝3



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.
– Very often loose upper-bounds are okay when designing for the 

worst case

Generally (but not always) making more assumptions about 
your random variable leads to a more accurate upper-bound.
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