CSE 312 Foundations of Computing II

Lecture 20: Tail Bounds -- Markov , Chebyshev, and Chernoff Bounds

Review: Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The **Joint PMF** of X and Y is $p_{X,Y}(a,b) = P(X = a, Y = b) = P(X = a) P(X = a) P(X = a)$ **Definition.** Let X and Y be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The marginal PMF of X $p_{X,Y}(a,b)$ $\forall p_X(a) \neq$ $b \in \Omega$ $P(X=a \wedge Y=b)$ 2

Review: Continuous distributions on $\mathbb{R} \times \mathbb{R}$

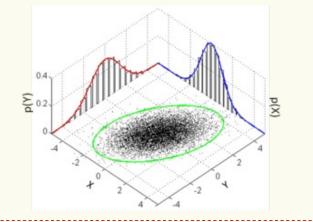
Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

•
$$f_{X,Y}(x,y) \ge 0$$
 for all $x, y \in \mathbb{R}$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \mathrm{d}x \, \mathrm{d}y = 1$$

The (marginal) PDFs f_X and f_Y are given by $- f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$

$$-f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$$

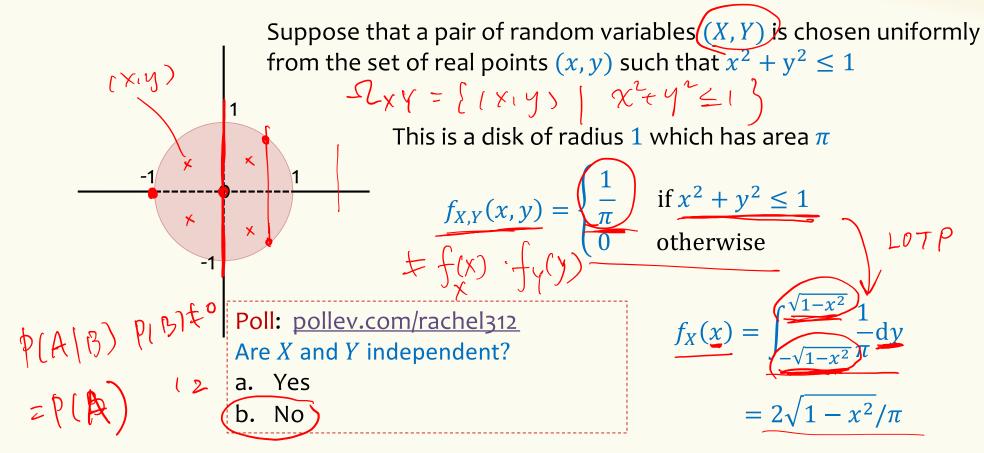


Independence and joint distributions

Definition. Discrete random variables *X* and *Y* are **independent** iff • $p_{X,Y}(x, y) = p_X(x) p_Y(y)$ for all $x \in \Omega_X, y \in \Omega_Y$

Definition. Continuous random variables *X* and *Y* are **independent** iff • $f_{X,Y}(x,y) = (f_X(x) \cdot f_Y(y))$ for all $x, y \in \mathbb{R}$

Example – Uniform distribution on a unit disk



Joint Expectation

Definition. Let *X* and *Y* be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The **expectation** of some function g(x, y) with inputs *X* and *Y*

$$\mathbb{E}[g(X,Y)] = \sum_{a \in \Omega_X} \sum_{b \in \Omega_Y} g(a,b) \cdot p_{X,Y}(a,b)$$
$$\mathbb{E}[(\chi+\chi)^2]$$

Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs

Conditional Expectation

Definition. Let *X* be a discrete random variable then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} \underline{x} \cdot P(X = x \mid A)$$

Notes:

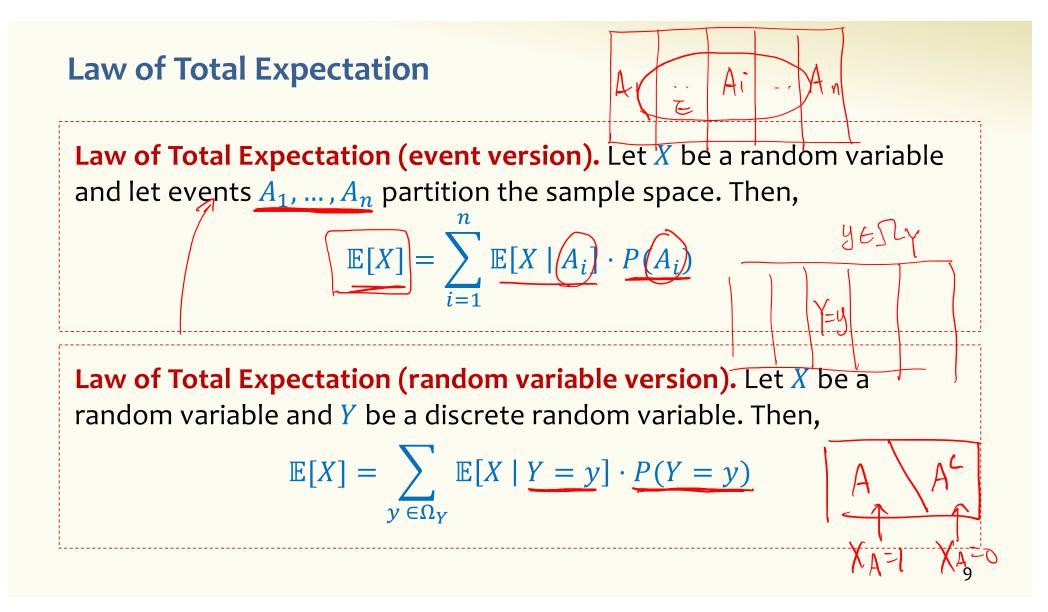
• Can be phrased as a "random variable version"

Linearity of expectation still applies here

 $\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$

 $\mathbb{E}[X| Y = y]$

8



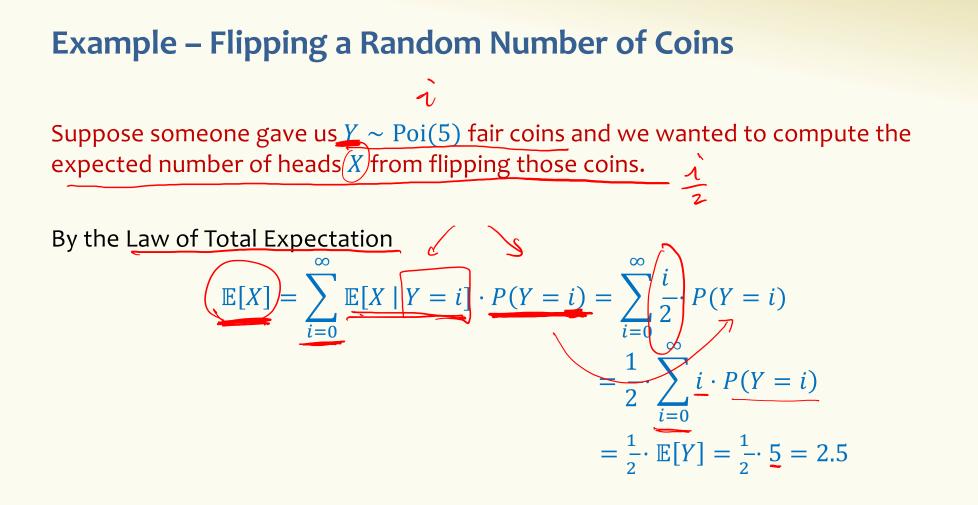
Proof of Law of Total Expectation (not covered)

Follows from Law of Total Probability and manipulating sums

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)$$

$$= \sum_{x \in \Omega_X} x \cdot \sum_{i=1}^n P(X = x | A_i) \cdot P(A_i)$$

$$= \sum_{i=1}^n P(A_i) \sum_{x \in \Omega_X} x \cdot P(X = x | A_i)$$
(by LTP)
(change order of sums)
$$= \sum_{i=1}^n P(A_i) \cdot \mathbb{E}[X|A_i]$$
(def of cond. expect.)



Agenda

- Joint Distributions
 - Cartesian Products
 - Joint PMFs and Joint Range
 - Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs

Conditional Expectation again...

Definition. Let *X* be a discrete random variable; then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Therefore for X and Y discrete random variables, the conditional expectation of X given Y = y is

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot \underline{P(X = x)(Y = y)} = \sum_{x \in \Omega_X} x \cdot \underline{p_{X|Y}(x|y)}$$

where we **define** $p_{X|Y}(x|y) = P(X = x \mid Y = y) = \underbrace{p_{X,Y}(x,y)}_{y = y = y}$

 $p_Y(y)$

Conditional Expectation – Discrete & Continuous

Discrete: Conditional PMF:
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

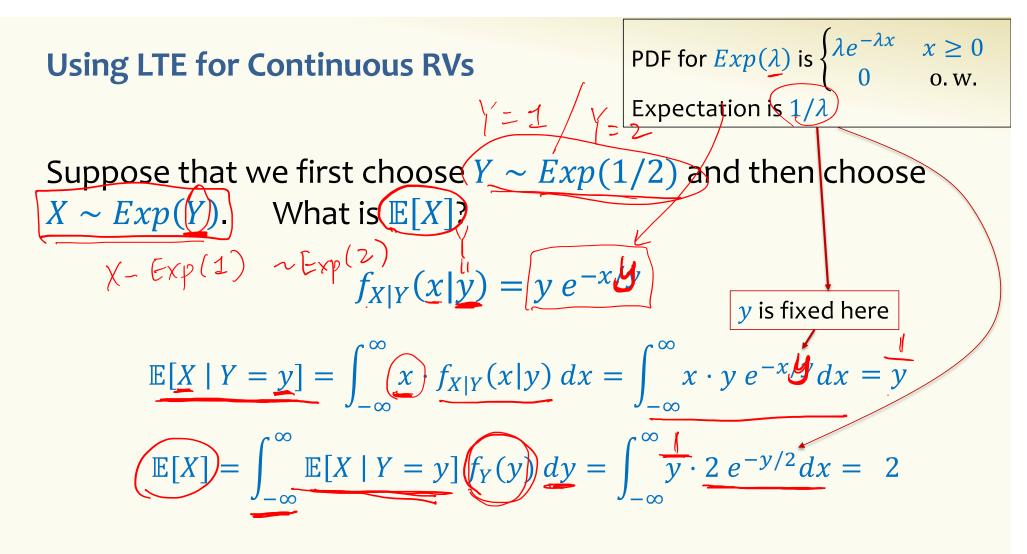
Conditional Expectation: $\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \ p_{X|Y}(x|y)$
Continuous: Conditional PDF: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation: $\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx$

Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* and *Y* be continuous random variables. Then, $\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X | Y = y] \cdot f_Y(y) dy$



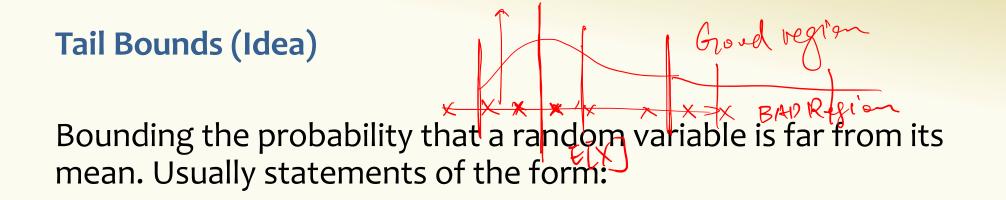
Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$	$f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Brain Break

Agenda

- Markov's Inequality 🗨
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound



$$\underbrace{P(X \ge a) \le b}_{P(|X - \mathbb{E}[X]| \ge a)} \le b$$

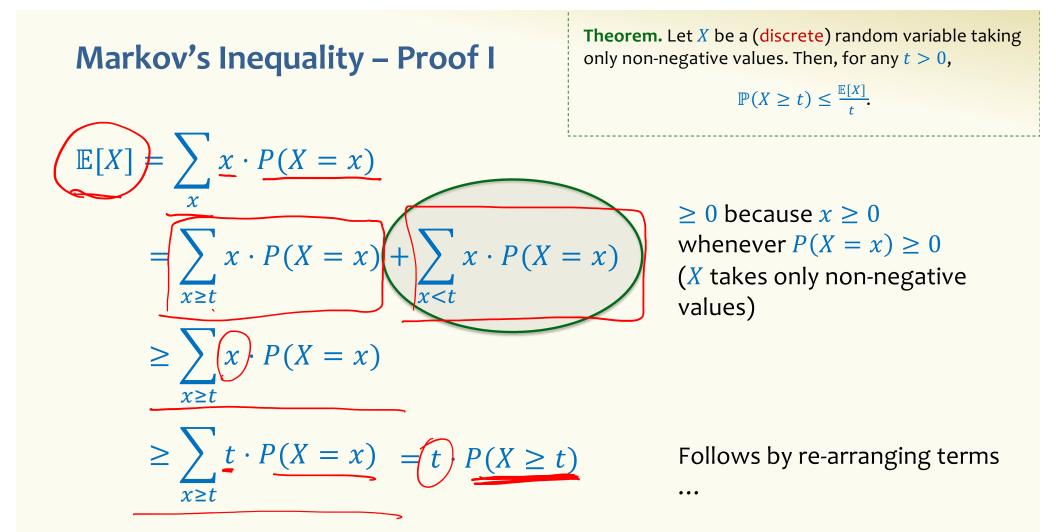
Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let *X* be a random variable taking only <u>non-negative</u> values. Then, for any t > 0, $P(X \ge t) \le \left[\frac{\mathbb{E}[X]}{t} \right]$, (Alternative form) For any $k \ge 1$, $P(X \ge k) \cdot \mathbb{E}[X]) \le \frac{1}{k}$ Incredibly simplistic – only requires that the random variable is non-negative and

only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of *X*.



Markov's Inequality – Proof II

Theorem. Let *X* be a (continuous) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$\mathbb{E}[X] = \int_{0}^{\infty} x \cdot f_{X}(x) \, dx$$

$$= \int_{t}^{\infty} x \cdot f_{X}(x) \, dx + \int_{0}^{t} x \cdot f_{X}(x) \, dx$$

$$\ge \int_{t}^{\infty} x \cdot f_{X}(x) \, dx$$

$$\ge \int_{t}^{\infty} t \cdot f_{X}(x) \, dx = t \cdot \int_{t}^{\infty} f_{X}(x) \, dx = t \cdot P(X \ge t)$$

so $P(X \ge t) \le \mathbb{E}[X]/t$ as before

27

Let X be geometric RV with parameter p

 $P(X = i) = (1 - p)^{i - 1}p$

 $\mathbb{E}[X] = \frac{1}{p}$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

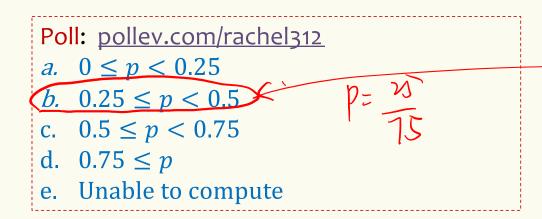
What is the probability that $X \ge 2\mathbb{E}[X] = (2/p)^2$

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Example

EX = 25

Suppose that the average number of ads you will see on a website is 25. Give an upper bound p on the probability of seeing a website with 75 or more ads. $p[\chi > 75] \leq E[\chi$



 $P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Example

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

 Poll: pollev.com/rachel312

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

 e. Unable to compute

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

 $P(X = i) = (1 - p)^{i - 1}p$ $\mathbb{E}[X] = \frac{1}{p}$

"X is Next, we will see that we can get better tail bounds using variance

e sees heads, if probability <mark>p</mark>?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let *X* be a random variable. Then, for any t > 0, $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Proof: Define $Z = X - \mathbb{E}[X]$. Then $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[Z^2]$.

$$P(|Z| \ge t) = P(Z^2 \ge t^2) \le \frac{\mathbb{E}[Z^2]}{t^2} = \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\operatorname{Var}(X)}{t^2}$$
$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

33

Example – Geometric Random Variable

Let X be geometric RV with parameter p $P(X = i) = (1 - p)^{i-1}p$ $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$ What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$? <u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ <u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$ Better if p > 1/2 \odot

34

Example

$$P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

Poll: Where does that upper bound <i>p</i> lie?		
pollev.com/rachel312		
<i>a.</i> $0 \le p < 0.25$		
<i>b.</i> $0.25 \le p < 0.5$		
c. $0.5 \le p < 0.75$		
d. $0.75 \le p$		
e. Unable to compute		

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

X = # of flips until n times "heads" $X_i = #$ of flips between (i - 1)-st and i-th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: X_1, \dots, X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

 $\underline{Markov:} P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ $\underline{Chebyshev:} P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{Var(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}$ $\underline{Coes \text{ to zero as } n \to \infty \odot}$ 37

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.