CSE 312

Foundations of Computing II

Lecture 20: Tail Bounds -- Markov ,

Chebyshev, and Chernoff Bounds

Review: Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
p_{X}(a)=\sum_{b \in \Omega_{Y}} p_{X, Y}(a, b)
$$

Review: Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$

The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Independence and joint distributions

Definition. Discrete random variables X and Y are independent iff

- $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for all $x \in \Omega_{X}, y \in \Omega_{Y}$

Definition. Continuous random variables X and Y are independent iff

- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ for all $x, y \in \mathbb{R}$

Example - Uniform distribution on a unit disk

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
\mathbb{E}[g(X, Y)]=\sum_{a \in \Omega_{X}} \sum_{b \in \Omega_{Y}} g(a, b) \cdot p_{X, Y}(a, b)
$$

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Notes:

- Can be phrased as a "random variable version"

$$
\mathbb{E}[X \mid Y=y]
$$

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Proof of Law of Total Expectation (not covered)

Follows from Law of Total Probability and manipulating sums

$$
\begin{align*}
\mathbb{E}[X] & =\sum_{x \in \Omega_{X}} x \cdot P(X=x) \\
& =\sum_{x \in \Omega_{X}} x \cdot \sum_{i=1}^{n} P\left(X=x \mid A_{i}\right) \cdot P\left(A_{i}\right) \tag{byLTP}\\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \sum_{x \in \Omega_{X}} x \cdot P\left(X=x \mid A_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]
\end{align*}
$$

(change order of sums)
(def of cond. expect.)

Example - Flipping a Random Number of Coins

Suppose someone gave us $Y \sim \operatorname{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{i=0}^{\infty} \mathbb{E}[X \mid Y=i] \cdot P(Y=i) & =\sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y=i) \\
& =\frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y=i) \\
& =\frac{1}{2} \cdot \mathbb{E}[Y]=\frac{1}{2} \cdot 5=2.5
\end{aligned}
$$

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Conditional Expectation and Law of Total Expectation
- Conditional expectation and LTE for continuous RVs

Conditional Expectation again...

Definition. Let X be a discrete random variable; then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Therefore for X and Y discrete random variables, the conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid Y=y]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid Y=y)=\sum_{x \in \Omega_{X}} x \cdot p_{X \mid Y}(x \mid y)
$$

where we define $p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$

Conditional Expectation - Discrete \& Continuous

Discrete: Conditional PMF: $\quad p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$
Conditional Expectation: $\mathbb{E}[X \mid Y=y]=\sum_{x \in \Omega_{X}} x \cdot p_{X \mid Y}(x \mid y)$
Continuous: Conditional PDF: $\quad f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation: $\quad \mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x$

Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X and Y be continuous random variables. Then,

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} \mathbb{E}[X \mid Y=y] \cdot f_{Y}(y) d y
$$

Using LTE for Continuous RVs

PDF for $\operatorname{Exp}(\lambda)$ is $\left\{\begin{array}{cc}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & 0 . \mathrm{w} .\end{array}\right.$
Expectation is $1 / \lambda$

Suppose that we first choose $Y \sim \operatorname{Exp}(1 / 2)$ and then choose $X \sim \operatorname{Exp}(Y) . \quad$ What is $\mathbb{E}[X]$?

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=y e^{-x / y} \\
\mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{\infty} x \cdot y e^{-x / y} d x=y \\
\mathbb{E}[X]=\int_{-\infty}^{\infty} \mathbb{E}[X \mid Y=y] f_{Y}(y) d y=\int_{-\infty}^{\infty} y \cdot 2 e^{-y / 2} d x=2
\end{gathered}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Brain Break

Agenda

- Markov’s Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$
\begin{gathered}
P(X \geq a) \leq b \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

(Alternative form) For any $k \geq 1$,

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Incredibly simplistic - only requires that the random variable is non-negative and only needs you to know expectation. You don't need to know anything else about the distribution of X.

Markov's Inequality - Proof I

Theorem. Let X be a (discrete) random variable taking only non-negative values. Then, for any $t>0$,

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x} x \cdot P(X=x) \\
& =\sum_{x \geq t} x \cdot P(X=x)+\sum_{x<t} x \cdot P(X=x) \quad \begin{array}{l}
\geq 0 \text { because } x \geq 0 \\
\text { whenever } P(X=x) \geq 0 \\
(X \text { takes only non-negative } \\
\text { values })
\end{array} \\
& \geq \sum_{x \geq t} x \cdot P(X=x) \\
& \geq \sum_{x \geq t} t \cdot P(X=x)=t \cdot P(X \geq t) \quad \begin{array}{l}
\text { Follows by re-arranging terms } \\
\cdots
\end{array}
\end{aligned}
$$

Markov's Inequality - Proof II

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& =\int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x+\int_{0}^{t} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} t \cdot f_{X}(x) \mathrm{d} x=t \cdot \int_{t}^{\infty} f_{X}(x) \mathrm{d} x=t \cdot P(X \geq t)
\end{aligned}
$$

so $P(X \geq t) \leq \mathbb{E}[X] / t$ as before

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$

Example

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 75 or more ads.

```
Poll: pollev.com/rachel312
a. 0}\leqp<0.2
b. 0.25\leqp<0.5
c. }0.5\leqp<0.7
d. 0.75 \leqp
e. Unable to compute
```


Example

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 20 or more ads.

```
Poll: pollev.com/rachel312
a. 0}\leqp<0.2
b. 0.25\leqp<0.5
c. }0.5\leqp<0.7
d. 0.75 \leqp
e. Unable to compute
```


Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is inext, we will see that we can get better tail bounds using variance
e sees heads, if 1 probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$

Agenda

- Markov’s Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}} .
$$

Proof: Define $Z=X-\mathbb{E}[X] . \quad$ Then $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[Z^{2}\right]$.

$$
\begin{aligned}
& P(|Z| \geq t)=P\left(Z^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[Z^{2}\right]}{t^{2}}=\frac{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}} \\
& \quad|Z| \geq t \text { iff } Z^{2} \geq t^{2} \quad \text { Markov's inequality }\left(Z^{2} \geq 0\right)
\end{aligned}
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

What is the probability that $X \geq 2 \mathbb{E}(X)=2 / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=1-p$

$$
\text { Better if } p>1 / 2 \oplus
$$

Example

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4 . Give an upper bound on the probability of seeing a website with 30 or more ads.

Poll: Where does that upper bound p lie? pollev.com/rachel312
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
c. $0.5 \leq p<0.75$
d. $0.75 \leq p$
e. Unable to compute

Chebyshev's Inequality - Repeated Experiments

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$X=$ \# of flips until n times "heads"
$X_{i}=\#$ of flips between $(i-1)$-st and i-th "heads"

$$
X=\sum_{i=1}^{n} X_{i}
$$

Note: X_{1}, \ldots, X_{n} are independent and geometric with parameter p

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}
$$

Chebyshev's Inequality - Coin Flips

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}$
What is the probability that $X \geq 2 \mathbb{E}[X]=2 n / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=\frac{1-p}{n}$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

- Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

