CSE 312 Foundations of Computing II

Lecture 21: Chernoff Bound & Union Bound

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

 $P(X \ge a) \le b$

or

 $P(|X - \mathbb{E}[X]| \ge a) \le b$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let *X* be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}$.

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let *X* be a random variable. Then, for any t > 0, $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Proof: Define $Z = X - \mathbb{E}[X]$. Then $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[Z^2]$.

$$P(|Z| \ge t) = P(Z^2 \ge t^2) \le \frac{\mathbb{E}[Z^2]}{t^2} = \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\operatorname{Var}(X)}{t^2}$$
$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

Example – Geometric Random Variable

Let X be geometric RV with parameter p $P(X = i) = (1 - p)^{i-1}p \qquad \mathbb{E}[X] = \frac{1}{p} \qquad \text{Var}(X) = \frac{1 - p}{p^2}$ What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$? <u>Markov:</u> $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ <u>Chebyshev:</u> $P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\text{Var}(X)}{\mathbb{E}[X]^2} = 1 - p$ Better if p > 1/2 ©

Example

$$P(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4. Give an upper bound on the probability of seeing a website with 30 or more ads.

```
Poll: Where does that upper bound p lie?

pollev.com/rachel312

a. 0 \le p < 0.25

b. 0.25 \le p < 0.5

c. 0.5 \le p < 0.75

d. 0.75 \le p

e. Unable to compute
```

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

X = # of flips until n times "heads" $X_i = #$ of flips between (i - 1)-st and i-th "heads"

$$X = \sum_{i=1}^{n} X_i$$

Note: X_1, \dots, X_n are independent and geometric with parameter p

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i) = \frac{n(1-p)}{p^2}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p} \qquad \operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{n(1-p)}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}[X] = 2n/p$?

 $\underline{Markov:} P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$ $\underline{Chebyshev:} P(X \ge 2\mathbb{E}[X]) \le P(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = \frac{1-p}{n}$ $\underline{Goes \text{ to zero as } n \to \infty \odot}$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

Brain Break

Agenda

- Markov's Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound <

Chebyshev & Binomial Distribution

Reformulated:
$$P(|X - \mu| \ge \delta \mu) \le \frac{\sigma^2}{\delta^2 \mu^2}$$
 where $\mu = \mathbb{E}[X]$ and $\sigma^2 = Var(X)$

If $X \sim Bin(n, p)$, then $\mu = np$ and $\sigma^2 = np(1-p)$

$$P(|X - \mu| \ge \delta\mu) \le \frac{np(1-p)}{\delta^2 n^2 p^2} = \frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$$

E.g., $\delta = 0.1, p = 0.5$: n = 200: $P(|X - \mu| \ge \delta\mu) \le 0.5$ n = 800: $P(|X - \mu| \ge \delta\mu) \le 0.125$

 $\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$

Chernoff-Hoeffding Bound

Theorem. Let $X = X_1 + \dots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}[X] = \mu$. Then, for every $\delta \in [0,1]$,

$$P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^2 \mu}{4}}.$$

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If $X \sim Bin(n, p)$, then $X = X_1 + \dots + X_n$ is a sum of independent {0,1}-Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim Bin(n, p)$. Let $\mu = np = \mathbb{E}[X]$. Then, for any $\delta \in [0,1]$,

$$P(|X-\mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}$$

Example: p = 0.5 $\delta = 0.1$

Chebyshev Chernoff

n	$\frac{1}{\delta^2} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-rac{\delta^2 np}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Chernoff Bound – Example

$$\mathbb{P}(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^2 np}{4}}$$

Alice tosses a fair coin *n* times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

Poll: pollev.com/rachel312
a.
$$e^{-n/64}$$

b. $e^{-n/32}$
c. $e^{-n/16}$
d. $e^{-n/8}$

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any t > 0:

- $P(X \ge (1+\delta) \cdot \mu) = P(e^{tX} \ge e^{t(1+\delta) \cdot \mu})$
- Then, apply Markov + independence: $P(e^{tX} \ge e^{t(1+\delta)\cdot\mu}) \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} = \frac{\mathbb{E}[e^{tX_1}]\cdots\mathbb{E}[e^{tX_n}]}{e^{t(1+\delta)\mu}}$
- Find *t* minimizing the right-hand-side.

Agenda

- Chernoff Bound
 - Example: Server Load

- The Union Bound
- Probability vs statistics
 - Estimation

Chernoff-Hoeffding Bound

Theorem. Let $X = X_1 + \dots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}[X] = \mu$. Then... for every $\delta \in [0,1]$, $P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$ both tails for every $\delta \ge 0$, $P(X - \mu \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$ right/upper tail

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If $X \sim Bin(n, p)$, then $X = X_1 + \dots + X_n$ is a sum of independent {0,1}-Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Agenda

- Chernoff Bound
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Application – Distributed Load Balancing

We have k processors, and $n \gg k$ jobs. We want to distribute jobs evenly across processors.

Strategy: Each job assigned to a randomly chosen processor!

 $X_i = \text{load of processor } i$ $X_i \sim \text{Binomial}(n, 1/k)$ $\mathbb{E}[X_i] = n/k$

 $X = \max{X_1, \dots, X_k} = \max$ load of a processor

Question: How close is *X* to n/k?

Distributed Load Balancing

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) \le 1/k^4.$

Example:

- $n = 10^6 \gg k = 1000$
- Perfect load balancing would give load $\frac{n}{k} = 1000$ per server
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that server *i* processes more than 1332 jobs is at most 1-over-one-trillion!"

Distributed Load Balancing

Claim. (Load of single server)

$$P\left(X_{i} > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) = P\left(X_{i} > \frac{n}{k}\left(1 + 4\sqrt{\frac{k\ln k}{n}}\right)\right) \le 1/k^{4}.$$
Proof. Set $\mu = \mathbb{E}[X_{i}] = \frac{n}{k}$ and $\delta = 4\sqrt{\frac{k}{n}\ln k}$

$$P\left(X_{i} > \mu\left(1 + 4\sqrt{\frac{k\ln k}{n}}\right)\right) = P(X_{i} > \mu(1 + \delta))$$

$$\begin{cases} \delta^{2} = 4^{2} \cdot \frac{k\ln k}{n} \\ \text{so } \delta^{2}\mu = 4^{2}\ln k \end{cases} = P(X_{i} - \mu > \delta\mu) \quad \text{Upper tail} \\ \le e^{-\frac{\delta^{2}\mu}{4}} = e^{-4\ln k} = \frac{1}{k^{4}} \end{cases}$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$

What about $X = \max\{X_1, \dots, X_k\}$?

Note: X_1 , ..., X_k are <u>not</u> (mutually) independent!

In particular: $X_1 + \dots + X_k = n$ -

When non-trivial outcome of one RV can be derived from other RVs, they are non-independent.

Detour – Union Bound – A nice name for something you already know

Theorem (Union Bound). Let A_1, \ldots, A_n be arbitrary events. Then,

Intuition (3 evts.):

Detour – Union Bound - Example

Suppose we have N = 200 computers, where each one fails with probability 0.001.

What is the probability that at least one server fails?

Let A_i be the event that server *i* fails. Then event that at least one server fails is A_i

$$P\left(\bigcup_{i=1}^{N} A_i\right) \le \sum_{i=1}^{N} P(A_i) = 0.001N = 0.2$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^4.$

What about $X = \max\{X_1, \dots, X_k\}$?

$$P\left(X > \frac{n}{k} + 4\sqrt{n\ln k/k}\right) = P\left(\left\{X_1 > \frac{n}{k} + 4\sqrt{n\ln k/k}\right\} \cup \dots \cup \left\{X_k > \frac{n}{k} + 4\sqrt{n\ln k/k}\right\}\right)$$

Union bound
$$= P\left(X_1 > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) + \dots + P\left(X_k > \frac{n}{k} + 4\sqrt{n\ln k/k}\right)$$
$$\leq \frac{1}{k^4} + \dots + \frac{1}{k^4} = k \times \frac{1}{k^4} = \frac{1}{k^3}$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n\ln k}{k}}\right) \le 1/k^4.$

Claim. (Max load) Let $X = \max\{X_1, \dots, X_k\}$. $P\left(X > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \le 1/k^3.$

Example:

- $n = 10^6 \gg k = 1000$
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332 jobs is at most 1-over-one-billion!"

Using tail bounds

- Tail bounds are guarantees, unlike our use of CLT
- Often, we actually start with a target upper bound on failure probability
 - In the load-balancing example, the value of δ in terms of n and k was worked out in order to get failure probability $\leq 1/k^4$
 - We didn't start out with this weird value
 - See example in section and on homework
- We use these bounds to design (randomized) algorithms or analyze their guaranteed level of success.