CSE 312

Foundations of Computing II

Lecture 21: Chernoff Bound \& Union Bound

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

$$
\begin{gathered}
P(X \geq a) \leq b \\
\text { or } \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

Agenda

- Markov’s Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev's Inequality

Theorem. Let X be a random variable. Then, for any $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}} .
$$

Proof: Define $Z=X-\mathbb{E}[X] . \quad$ Then $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[Z^{2}\right]$.

$$
\begin{aligned}
& P(|Z| \geq t)=P\left(Z^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[Z^{2}\right]}{t^{2}}=\frac{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}} \\
& |Z| \geq t \operatorname{iff} Z^{2} \geq t^{2} \quad \text { Markov's inequality }\left(Z^{2} \geq 0\right)
\end{aligned}
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

What is the probability that $X \geq 2 \mathbb{E}(X)=2 / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=1-p$

$$
\text { Better if } p>1 / 2 \oplus
$$

Example

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 4 . Give an upper bound on the probability of seeing a website with 30 or more ads.

Poll: Where does that upper bound p lie? pollev.com/rachel312
a. $0 \leq p<0.25$
b. $0.25 \leq p<0.5$
c. $0.5 \leq p<0.75$
d. $0.75 \leq p$
e. Unable to compute

Chebyshev's Inequality - Repeated Experiments

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$X=$ \# of flips until n times "heads"
$X_{i}=\#$ of flips between $(i-1)$-st and i-th "heads"

$$
X=\sum_{i=1}^{n} X_{i}
$$

Note: X_{1}, \ldots, X_{n} are independent and geometric with parameter p

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}
$$

Chebyshev's Inequality - Coin Flips

"How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p ?
$\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n}{p} \quad \operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n(1-p)}{p^{2}}$
What is the probability that $X \geq 2 \mathbb{E}[X]=2 n / p$?
Markov: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$
Chebyshev: $P(X \geq 2 \mathbb{E}[X]) \leq P(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=\frac{1-p}{n}$

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

- Very often loose upper-bounds are okay when designing for the worst case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bound.

Brain Break

Agenda

- Markov’s Inequality
- Chebyshev's Inequality
- Chernoff-Hoeffding Bound

Chebyshev \& Binomial Distribution

Reformulated: $P(|X-\mu| \geq \delta \mu) \leq \frac{\sigma^{2}}{\delta^{2} \mu^{2}}$ where $\mu=\mathbb{E}[X]$ and $\sigma^{2}=\operatorname{Var}(X)$

If $X \sim \operatorname{Bin}(n, p)$, then $\mu=n p$ and $\sigma^{2}=n p(1-p)$

$$
P(|X-\mu| \geq \delta \mu) \leq \frac{n p(1-p)}{\delta^{2} n^{2} p^{2}}=\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}
$$

E.g., $\delta=0.1, p=0.5: \quad n=200: P(|X-\mu| \geq \delta \mu) \leq 0.5$

$$
n=800: P(|X-\mu| \geq \delta \mu) \leq 0.125
$$

How good is it?

Binomial with parameter $n=200, p=0.5$

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RVs, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then, for every $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}} .
$$

Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent $\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff-Hoeffding Bound - Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim \operatorname{Bin}(n, p)$. Let $\mu=n p=$ $\mathbb{E}[X]$. Then, for any $\delta \in[0,1]$,

$$
P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Example:
$p=0.5$
$\delta=0.1$

Chebyshev		
n	$\frac{1}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1-p}{p}$	$e^{-\frac{\delta^{2} n p}{4}}$
800	0.125	0.3679
2600	0.03846	0.03877
8000	0.0125	0.00005
80000	0.00125	3.72×10^{-44}

Chernoff Bound - Example

$$
\mathbb{P}(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} n p}{4}} .
$$

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75 \times n$ times?

```
Poll: pollev.com/rachel312
a. }\mp@subsup{e}{}{-n/64
b. }\mp@subsup{e}{}{-n/32
c. }\mp@subsup{e}{}{-n/16
d. }\mp@subsup{e}{}{-n/8
```


Chernoff vs Chebyshev - Summary

$$
e^{-\frac{\delta^{2} n p}{4}}
$$

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any $t>0$:

- $P(X \geq(1+\delta) \cdot \mu)=P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right)$
- Then, apply Markov + independence:

$$
P\left(e^{t X} \geq e^{t(1+\delta) \cdot \mu}\right) \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}}=\frac{\mathbb{E}\left[e^{t X_{1}}\right] \cdots \mathbb{E}\left[e^{t X_{n}}\right]}{e^{t(1+\delta) \mu}}
$$

- Find t minimizing the right-hand-side.

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Chernoff-Hoeffding Bound

Theorem. Let $X=X_{1}+\cdots+X_{n}$ be a sum of independent RV s, each taking values in $[0,1]$, such that $\mathbb{E}[X]=\mu$. Then...

$$
\begin{array}{ll}
\text { for every } \delta \in[0,1], & P(|X-\mu| \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}}
\end{array} \quad \text { both tails } \quad \text { for every } \delta \geq 0, \quad P(X-\mu \geq \delta \cdot \mu) \leq e^{-\frac{\delta^{2} \mu}{4}} \quad \text { right/upper tail }
$$

Example: If $X \sim \operatorname{Bin}(n, p)$, then $X=X_{1}+\cdots+X_{n}$ is a sum of independent $\{0,1\}$-Bernoulli variables, and $\mu=n p$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Chernoff vs Chebyshev - Summary

$$
e^{-\frac{\delta^{2} n p}{4}}
$$

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Application - Distributed Load Balancing

We have k processors, and $n \gg k$ jobs.
We want to distribute jobs evenly across processors.
Strategy: Each job assigned to a randomly chosen processor!
$X_{i}=$ load of processor $i \quad X_{i} \sim \operatorname{Binomial}(n, 1 / k) \quad \mathbb{E}\left[X_{i}\right]=n / k$
$X=\max \left\{X_{1}, \ldots, X_{k}\right\}=$ max load of a processor

Question: How close is X to n / k ?

Distributed Load Balancing

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

Example:

- $n=10^{6} \gg k=1000$
- Perfect load balancing would give load $\frac{n}{k}=1000$ per server
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that server i processes more than 1332 jobs is at most 1-over-one-trillion!"

Distributed Load Balancing

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right)=P\left(X_{i}>\frac{n}{k}\left(1+4 \sqrt{\frac{k \ln k}{n}}\right)\right) \leq 1 / k^{4} .
$$

Proof. Set $\mu=\mathbb{E}\left[X_{i}\right]=\frac{n}{k}$ and $\delta=4 \sqrt{\frac{k}{n} \ln k}$

$$
\begin{aligned}
P\left(X_{i}>\mu\left(1+4 \sqrt{\frac{k \ln k}{n}}\right)\right) & =P\left(X_{i}>\mu(1+\delta)\right) \\
& =P\left(X_{i}-\mu>\delta \mu\right) \quad \text { Upper tail } \\
\delta^{2}=4^{2} \cdot \frac{k \ln k}{n} & \\
\text { so } \delta^{2} \mu=4^{2} \ln k &
\end{aligned} e^{-\frac{\delta^{2} \mu}{4}}=e^{-4 \ln k}=\frac{1}{k^{4}} \quad \text { I }
$$

What about the maximum load?

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

What about $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$?
Note: X_{1}, \ldots, X_{k} are not (mutually) independent!
In particular: $X_{1}+\cdots+X_{k}=n \quad$ When non-trivial outcome of one $R V$ can be derived from other RVs, they are non-independent.

Detour - Union Bound - A nice name for something you already know

Theorem (Union Bound). Let A_{1}, \ldots, A_{n} be arbitrary events. Then,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Intuition (3 evts.):

Detour - Union Bound - Example

Suppose we have $N=200$ computers, where each one fails with probability 0.001 .
What is the probability that at least one server fails?
Let A_{i} be the event that server i fails.
Then event that at least one server fails is $\bigcup_{i=1}^{n} A_{i}$

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} P\left(A_{i}\right)=0.001 N=0.2
$$

What about the maximum load?

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4} .
$$

What about $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$?
$P\left(X>\frac{n}{k}+4 \sqrt{n \ln k / k}\right)=P\left(\left\{X_{1}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\} \cup \cdots \cup\left\{X_{k}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right\}\right)$
Union bound $\longrightarrow \leq P\left(X_{1}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right)+\cdots+P\left(X_{k}>\frac{n}{k}+4 \sqrt{n \ln k / k}\right)$

$$
\leq \frac{1}{k^{4}}+\cdots+\frac{1}{k^{4}}=k \times \frac{1}{k^{4}}=\frac{1}{k^{3}}
$$

What about the maximum load?

Claim. (Load of single server)

$$
P\left(X_{i}>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{4}
$$

Claim. (Max load) Let $X=\max \left\{X_{1}, \ldots, X_{k}\right\}$.

$$
P\left(X>\frac{n}{k}+4 \sqrt{\frac{n \ln k}{k}}\right) \leq 1 / k^{3}
$$

Example:

- $n=10^{6} \gg k=1000$
- $\frac{n}{k}+4 \sqrt{n \ln k / k} \approx 1332$
- "The probability that some server processes more than 1332
jobs is at most 1-over-one-billion!""

Using tail bounds

- Tail bounds are guarantees, unlike our use of CLT
- Often, we actually start with a target upper bound on failure probability
- In the load-balancing example, the value of δ in terms of n and k was worked out in order to get failure probability $\leq 1 / k^{4}$
- We didn't start out with this weird value
- See example in section and on homework
- We use these bounds to design (randomized) algorithms or analyze their guaranteed level of success.

