CSE 312
Foundations of Computing Il

Lecture 22: Maximum Likelihood Estimation (MLE)



Announcement

e | ecture on Wed is cancel.

No lecture on Friday. Happy thanks giving!
 Pset 7is due on Wed

Pset 8 is out on Wed, due on next Friday



Agenda

* Chernoff Bound
— Example: Server Load

— The Union Bound

* Probability vs statistics

. 0 .
— Estimation



Probability vs Statistics

Probability
Given model, predict |:> P(THHTHH)
data
Statistics

Given data, predict <::| THHTHH

model




V. IS X;?
Formalizing Polls What type of I.v. Is &;

----------------------------------------------------------------------------------------

Population size N, true fraction of 'a. Bernoulli
voting in favor p, sample size n.

Problem: We don’t kn@

Polling Procedure
fori=1,..,n:

1. Pick uniformly random person to call (prob: 1/N)
2. Ask them how they will vote

1, voting in favor
Xi — .
0, otherwise
. — 1
Report our estimate of p: X =~ t X



Formalizing Polls

We assume that poll answers\Xl, );} Ber@ i.i.d. for unknown p
_—

Goal: Estimate p

We did this by computin@

Why is that a good estimate for p?




More generally ...

In estimation we....

* Assume: we know the type of the random variable that we
are observing independent samples from

— We just don’t know the parameters, e.g.
* the bias p of a random coin Bernoulli

* The arrival rate A for the Poissonéﬂi or Exponential@

* The mean i and variance ¢ of a normal ]\ffz,u, ap

* Goal: find the “best” parameters to fit the data



Notation — Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions
indexed by a parameter 6, described by a two-argument function

P(x; ,Q,) = prob. of outcome x when distribution has parameter 6

f7D9 (%) [i.e., every O defines a different distribution ), P(x; ) = 1]

Examples

/9( 0~ —
« L § p A= 1
« “Bernoullis”: P(x; 0 =p) = {1 —p x=0

————————_

o “Geometrics”: P(i;0 =p) = (1;@ fori € N



Statistics: Parameter Estimation — Workflow

Distribution
P(x; 6)

6 = unknown paramete

Independent
samples
Xy, Xy

1» )
from P(x; 0)

Parameter

estimalte
/

Estimation

Algorithm
p—-

—(

Example: coin flip distribution with unknown 6 = probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 6

S ———————




Example

Suppose we have a mystery coin with some probability p of coming up heads. We
flip the coin 8 times, independent of other flips, and see the following sequence

flips

TTHTHTTH

Given this data, what WO?JId you estimate p is?

U /YK -
 Poll: pollev.com/paulbeamens8 |
a. 1/2

b.

d. 1/4

10



Agenda

* |dea: Estimation
e Maximum Likelihood Estimation (example: mystery coin) @
* Continuous MLE

1"



Likelihood

Say we see outcome({HTHH.

You tell me your best guess
about the value of the unknown
parameter 6 (a.k.a. p)is 4/5. Is
there some way that you can
argue “objectively” that this is
the best estimate?

12



Likelihood Max Prob of seeing HHTHH

Say we see outcome HHTHH, 2 0_7Lbi)

L(HHTHH | 6) =6*(1 — 6) (5 oos |\

0

y . n 4
Probability of observing the  §-4.0) 0.0 (0.0 )
outcome HHTHH if 6 = prob. .
of heads.

For a fixed Outcome HHTHH , 0 01 02 03 04 00.6 07 i 09 1

this is a function of 6.

13



Likelihood of Different Observations (Discrete case)

Maximum Likelihood Estimation (MLE). Given data x4, ...., x,, find
O suchthat L(xy, ..., x, | 0) is maximized!

arggnax FF:;XTL H)J

B 0InL(Xq, ..., Xn|0) _ - |
Y =0or Y = 0 [+check it’s a max!] "




Likelihood vs. Probability

J probability [Ti2{ P(x;; 0) that dataset x4, ..., x,, is
sampled by distribution with parameter 6

— Afunctionof x4, ..., x,,

* Fixed x4, ..., xy: likelihood L(x4, ..., x,| 8) that parameter 6
explains dataset x4, ..., x,,.
— A function of 6

—_—

These notions are the same number if we fix both x4, ..., x,
and 0, but different role/interpretation

15



Example - Coin Flips A Ny
' N
Observe: Coin-flip outcomes[j@, .y Ja, with ny heads, n tails

— i.e.@+@ =n Goal: estimate 6 = prob. heads.

.
L(Xl, .,an 9) = 0@(1 — 0)@ M
= T {

0 ntooaT | /\>

o
— — — (,_

While it is possible to compute this derivative, it’s not s
nice since we are working with products.

16



Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood
directly.

___________________________________________________________________________________________________________________________________________________________________

X, e

Useful log properties
In(ab) = In(a) + In(b)
In(a/b) = In(a) — In(b)

In(a®) = b - In(a) ,



Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—i.e,ny+ny=n Goal: estimate 6 = prob. heads.

L(xy, ., %] 6) = 0™ (1 — )T

In L(xq, ..., %p| ) =nyIn6 + nypln(l - 6)

pu—t

-%iln L(Xq, e, Xp] 0) =1y - e S
a6 0 1-0 ~ Solving gives
Want value 6 of 0 s.t. Q%ln L(X{, .., x| 0) = __: é = nTH
SoweneednH%—nT-£=O """"""""""""""""""""""""""""""""" 5




General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 0.

2. Likelihood Define your likelihood £ (x4, x,,| 6).
— For discrete L(xq, ..., x| 0) ’\ €«

3.Log Compute In L(xq, ....,x,| 0) =

4. Differentiate Compute ;—eln L(x1,....,X5| 0)

5. Solve for § by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.

19



Brain Break

20



Agenda

* |dea: Estimation
e Maximum Likelihood Estimation (example: mystery coin)
* Continuous MLE @

21



The Continuous Case

Given n (independent) samples x4, ..., x,, from (continuous)
parametric model f (x;; 8) which is now a family of densities

6)]= ﬁf(xi; 0)
=1

22



Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model

23



e ———

[i.e., we are given the promise that the variance is 1]

n samples x4, ..., x,, € R from Gaussian N(u@ Most likely p?

24



n samples x4, ..., x,, € R from Gaussian N (u, 1). Most likely u?

u=0?

Unlikely ...

25



n samples x4, ..., x,, € R from Gaussian N (u, 1). Most likely u?

u =37

Better, but
optimal?

26



Example - Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance 6 = 1 but
unknown mean u

Goal: estimate @ = mean | _7-'5

In other words, MLE is the g o K’% /Zg} >
@

sample mean of the data.

27



General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 6.

2. Likelihood Define your likelihood L(x4, ...., x| 0).
— For discrete L1, ey xn| 8) =112, P(x;;0)
— For continuous  L(x4, ..., x,| 0) = [1}Y, f(x;; 60)

3. Log ComputeIn L(x4, ...., x,| 0)

4. Differentiate Compute :—Hln L(X1)0nr, Xy O)

5. Solve for @ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum,
but we won’t ask you to do that in CSE 312.



