
CSE 312

Foundations of Computing II
Lecture 22: Maximum Likelihood Estimation (MLE)
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Announcement 

• Lecture on Wed is cancel. 
• No lecture on Friday. Happy thanks giving! 
• Pset 7 is due on Wed 
• Pset 8 is out on Wed, due on next Friday 
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Agenda

• Chernoff Bound
– Example: Server Load
– The Union Bound

• Probability vs statistics
– Estimation
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Probability vs Statistics
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Probability
Given model, predict 

data 
Ber 𝑝 = 0.5 𝑃(𝑇𝐻𝐻𝑇𝐻𝐻)

Statistics
Given data, predict 

model 
𝑇𝐻𝐻𝑇𝐻𝐻Ber 𝑝 =? ?



Recall Formalizing Polls
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Polling Procedure 
for 𝑖 = 1, … , 𝑛	:
    1. Pick uniformly random person to call (prob: 1/𝑁)
    2. Ask them how they will vote

𝑋! = +1, 	 voting	in	favor
0, 	 otherwise

Report our estimate of 𝑝:	 <𝑋 = "
#
∑!$"# 𝑋!

Population size 𝑁, true fraction of 
voting in favor 𝑝, sample size 𝑛.
 Problem: We don’t know 𝑝

    𝔼[𝑋!]	 Var(𝑋!)
a.  Bernoulli     𝑝	 𝑝(1 − 𝑝)

What type of r.v. is 𝑋:?



Recall Formalizing Polls
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We assume that poll answers 𝑋", … , 𝑋#	~	Ber(𝑝) i.i.d. for unknown 𝑝   

Goal: Estimate 𝑝

We did this by computing  �̂� = "
#
∑!$"
# 𝑋!

Why is that a good estimate for 𝑝?



More generally …

In estimation we…. 
• Assume: we know the type of the random variable that we 

are observing independent samples from
– We just don’t know the parameters, e.g.

• the bias 𝑝 of a random coin Bernoulli(𝑝)
• The arrival rate 𝜆 for the Poisson(𝜆)	or Exponential(𝜆)
• The mean 𝜇 and variance 𝜎 of a normal 𝒩(𝜇, 𝜎)

• Goal: find the “best” parameters to fit the data
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Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions 
indexed by a parameter 𝜃, described by a two-argument function

𝑃 𝑥; 𝜃 = prob. of outcome 𝑥 when distribution has parameter 𝜃

Examples

• “Bernoullis”: 𝑃 𝑥; 𝜃 = 𝑝 = '𝑝	 𝑥 = 1
1 − 𝑝	 𝑥 = 0

• “Geometrics”: 𝑃 𝑖; 𝜃 = 𝑝 = 1 − 𝑝 !"#𝑝     for 𝑖 ∈ ℕ
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[i.e., every 𝜃 defines a different distribution ∑" 𝑃 𝑥; 𝜃 = 1] 



Statistics: Parameter Estimation – Workflow
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Distribution 
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋", … , 𝑋# 
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

G𝜃

Parameter 
estimate

𝜃 = unknown parameter

Example: coin flip distribution with unknown 𝜃 = probability of heads  

Observation:  𝐻𝑇𝑇𝐻𝐻𝐻𝑇𝐻𝑇𝐻𝑇𝑇𝑇𝑇𝐻𝑇𝐻𝑇𝑇𝑇𝑇𝑇𝐻𝑇

Goal: Estimate 𝜃



Example

Suppose we have a mystery coin with some probability 𝑝 of coming up heads. We 
flip the coin 8 times, independent of other flips, and see the following sequence 
flips

𝑇𝑇𝐻𝑇𝐻𝑇𝑇𝐻

Given this data, what would you estimate 𝑝 is?
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Poll: pollev.com/paulbeame028 
a.  1/2
b.  5/8
c.  3/8
d.  1/4



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Likelihood
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You tell me your best guess 
about the value of the unknown 
parameter 𝜃 (a.k.a. 𝑝) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate?

Say we see outcome 𝐻𝐻𝑇𝐻𝐻. 



Likelihood
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ℒ 𝐻𝐻𝑇𝐻𝐻	|	𝜃 = 𝜃+(1 − 𝜃)

Probability of observing the 
outcome 𝐻𝐻𝑇𝐻𝐻 if 𝜃 = prob. 
of heads. 

For a fixed outcome 𝐻𝐻𝑇𝐻𝐻	, 
this is a function of 𝜃. 

Say we see outcome 𝐻𝐻𝑇𝐻𝐻. 
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Likelihood of Different Observations
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Definition. The likelihood of independent observations 𝑥", … . , 𝑥#	is

ℒ 𝑥", … . , 𝑥#	 𝜃 =N
!$"

#

𝑃(𝑥!; 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥", … . , 𝑥#, find 
G𝜃	such that  ℒ 𝑥", … . , 𝑥#	 G𝜃  is maximized!

G𝜃 = 	 argmax
,

	 ℒ 𝑥", … . , 𝑥# 	𝜃

Usually: Solve 
$ℒ 𝑥&, … . , 𝑥'	 𝜃

$(
= 0 or 

$ )* ℒ 𝑥&, … . , 𝑥'	 𝜃
$(

= 0 [+check it’s a max!]   



Likelihood vs. Probability

• Fixed 𝜃: probability ∏:UV
W 𝑃(𝑥:; 𝜃)	that dataset 𝑥V, … , 𝑥W is 

sampled by distribution with parameter 𝜃
–  A function of 𝑥", … , 𝑥#

• Fixed 𝑥V, … , 𝑥W: likelihood ℒ 𝑥V, … , 𝑥W 	𝜃) that parameter 𝜃 
explains dataset 𝑥V, … , 𝑥W.
–  A function of 𝜃

These notions are the same number if we fix both 𝑥V, … , 𝑥W 
and 𝜃, but different role/interpretation 
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Example – Coin Flips

Observe: Coin-flip outcomes 𝑥V, … , 𝑥W, with 𝑛X heads, 𝑛Y tails
– i.e., 𝑛- + 𝑛. = 𝑛 
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𝜕
𝜕𝜃

ℒ 𝑥", … . , 𝑥# 	𝜃 =	? ? ?

Goal: estimate 𝜃 = prob. heads. 

While it is possible to compute this derivative, it’s not always 
nice since we are working with products.

ℒ 𝑥", … . , 𝑥# 	𝜃 = 𝜃#! 1 − 𝜃 #"



Log-Likelihood
We can save some work if we use the log-likelihood instead of the likelihood 
directly.

Useful log properties
ln 𝑎𝑏 = ln 𝑎 + ln 𝑏
ln 𝑎/𝑏 = ln 𝑎 − ln(𝑏)	

ln 𝑎! = 𝑏 ⋅ ln(𝑎) 17

Definition. The log-likelihood of independent observations 
𝑥", … . , 𝑥#	is

ln ℒ 𝑥", … , 𝑥# 	𝜃) = lnN
!$"

#

𝑃(𝑥!; 𝜃) = U
!$"

#

ln 𝑃(𝑥!; 𝜃)



Example – Coin Flips

Observe: Coin-flip outcomes 𝑥V, … , 𝑥W, with 𝑛X heads, 𝑛Y tails
– i.e., 𝑛- + 𝑛. = 𝑛 
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ℒ 𝑥", … . , 𝑥# 	𝜃 = 𝜃#! 1 − 𝜃 #"

Goal: estimate 𝜃 = prob. heads. 

ln ℒ 𝑥", … . , 𝑥# 	𝜃 = 𝑛- ln 𝜃 + 𝑛. ln(1 − 𝜃)
𝜕
𝜕𝜃

ln ℒ 𝑥", … . , 𝑥# 	𝜃 = 𝑛- ⋅
1
𝜃
− 𝑛. ⋅

1
1 − 𝜃

Want value G𝜃 of 𝜃 s.t. /
/,
ln ℒ 𝑥", … . , 𝑥# 	𝜃 = 0	

So we need 𝑛- ⋅
"
0,
− 𝑛. ⋅

"
"10,

= 0

Solving gives 
!𝜃 = &!

&
 



General Recipe

1. Input Given 𝑛 i.i.d. samples 𝑥#, … , 𝑥$ from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥#, … . , 𝑥$ 	𝜃 .
– For discrete   ℒ 𝑥", … . , 𝑥# 	𝜃 = ∏$%"

# 𝑃 𝑥$ 	; 𝜃
3. Log  Compute ln	ℒ 𝑥#, … . , 𝑥$ 	𝜃
4. Differentiate Compute %%& ln ℒ 𝑥#, … . , 𝑥$ 	𝜃
5. Solve for 6𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Brain Break
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Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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The Continuous Case

Given 𝑛 (independent) samples 𝑥V, … , 𝑥W from (continuous) 
parametric model 𝑓 𝑥:; 𝜃  which is now a family of densities
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Definition. The likelihood of independent observations 𝑥", … . , 𝑥#	is

ℒ 𝑥", … . , 𝑥# 	𝜃 =N
!$"

#

𝑓(𝑥!; 𝜃)

Density function! (Why?)



Why density?

• Density ≠ probability, but:
– For maximizing likelihood, we really only care about relative 

likelihoods, and density captures that
– has desired property that likelihood increases with better fit to the 

model
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥&, … , 𝑥' ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?
[i.e., we are given the promise that the variance is 1]
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥&, … , 𝑥' ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 0?

Unlikely …
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥&, … , 𝑥' ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 3?
Better, but 
optimal? 



Example – Gaussian Parameters

Normal outcomes 𝑥V, … , 𝑥W, known variance 𝜎] = 1 but 
unknown mean 𝜇 
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Goal: estimate 𝜃 = mean

Next time: 
G𝜃 = ∑#

$ 3#
#

In other words, MLE is the 
sample mean of the data.



General Recipe

1. Input Given 𝑛 i.i.d. samples 𝑥", … , 𝑥# from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥", … . , 𝑥# 	𝜃 .

– For discrete   ℒ 𝑥%, … . , 𝑥& 	𝜃 = ∏'(%
& 𝑃 𝑥'	; 𝜃

– For continuous  ℒ 𝑥%, … . , 𝑥& 	𝜃 = ∏'(%
& 𝑓 𝑥'	; 𝜃

3. Log  Compute ln	ℒ 𝑥", … . , 𝑥# 	𝜃

4. Differentiate Compute &
&'
ln ℒ 𝑥", … . , 𝑥# 	𝜃

5. Solve for 0𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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