CSE 312 Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Announcement

- Lecture on Wed is cancel.
- No lecture on Friday. Happy thanks giving!
- Pset 7 is due on Wed
- Pset 8 is out on Wed, due on next Friday

Agenda

- Chernoff Bound
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Probability vs Statistics

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n. **Problem:** We don't know p

Polling Procedure

for i = 1, ..., n:

- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

$$X_i = \begin{cases} 1, \\ 0, \end{cases}$$

voting in favor otherwise

Report our estimate of *p*:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

What type of r.v. is <i>X_i</i> ?			
		$\mathbb{E}[X_i]$	$Var(X_i)$
а.	Bernoulli	p	p(1-p)

5

Recall Formalizing Polls

We assume that poll answers $X_1, \dots, X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown p</u>

Goal: Estimate *p*

We did this by computing
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Why is that a good estimate for *p*?

More generally ...

In estimation we....

- Assume: we know the type of the <u>random variable</u> that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli p
 - The arrival rate λ for the Poisson(λ) or Exponential (λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ , described by a two-argument function

 $P(x; \theta) = \text{prob. of outcome } x \text{ when distribution has parameter } \theta$ $P_{\theta}(x) \quad [\text{i.e., every } \theta \text{ defines a different distribution } \sum_{x} P(x; \theta) = 1]$ **Examples**

• "Bernoullis":
$$P(x; \underline{\theta} = p) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$

• "Geometrics": $P(\underline{i}; \theta = p) = (1-p)^{i-1}p$ for $i \in \mathbb{N}$

Statistics: Parameter Estimation – Workflow

Example: coin flip distribution with unknown θ = probability of heads

Observation: *HTTHHHTHTHTHTHTHTHTHTTTTHT*

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

TTHTHTTH

	Given this data, what would you estimate p is	s?
	Poll: pollev.com/p aulbeameo2 8	
	a. 1/2	
	b. <u>5/8</u>	
(c. 3/8	
	d. 1/4	

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter $\underline{\theta}$ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood of Different Observations

(Discrete case)

Likelihood vs. Probability

• Fixed θ : probability $\prod_{i=1}^{n} P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ

- A function of x_1, \ldots, x_n

- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> $x_1, ..., x_n$ and θ , but different role/interpretation

Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Useful log properties

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = \underline{b \cdot \ln(a)}$

17

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails – i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

General Recipe

- 1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, x_n \mid \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\underline{\theta}}$ by setting derivative to $\underline{0}$ and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE 🗲

The Continuous Case

Given *n* (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of densities

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ </u>?

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example – Gaussian Parameters

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$ but unknown mean μ

Goal: estimate θ = mean

In other words, MLE is the sample mean of the data.

General Recipe

1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.