CSE 312

Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

Announcement

- Lecture on Wed is cancel.
- No lecture on Friday. Happy thanks giving!
- Pset 7 is due on Wed
- Pset 8 is out on Wed, due on next Friday

Agenda

- Chernoff Bound
- Example: Server Load
- The Union Bound
- Probability vs statistics
- Estimation

Probability vs Statistics

Recall Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

Polling Procedure

for $i=1, \ldots, n$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of $p: \quad \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Recall Formalizing Polls

We assume that poll answers $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown p

Goal: Estimate p

We did this by computing $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Why is that a good estimate for p ?

More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing independent samples from
- We just don't know the parameters, e.g.
- the bias p of a random coin Bernoulli (p)
- The arrival rate λ for the Poisson (λ) or Exponential (λ)
- The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Notation - Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ, described by a two-argument function

$$
\begin{aligned}
& P(x ; \theta)=\text { prob. of outcome } x \text { when distribution has parameter } \theta \\
& \qquad \text { [i.e., every } \theta \text { defines a different distribution } \sum_{x} P(x ; \theta)=1 \text {] }
\end{aligned}
$$

Examples

- "Bernoullis": $P(x ; \theta=p)= \begin{cases}p & x=1 \\ 1-p & x=0\end{cases}$
- "Geometrics": $P(i ; \theta=p)=(1-p)^{i-1} p \quad$ for $i \in \mathbb{N}$

Statistics: Parameter Estimation - Workflow

$\theta=\underline{u n k n o w n ~ p a r a m e t e r ~}$

Example: coin flip distribution with unknown $\theta=$ probability of heads

Observation: HTTHHHTHT HTTTT HT HTTTTTHT
Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips
TTHTHTTH

Given this data, what would you estimate p is?
Poll: pollev.com/rachel312
a. $1 / 2$
b. $5 / 8$
c. $3 / 8$
d. $1 / 4$

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Say we see outcome HHTHH.
$\mathcal{L}($ HHTHH $\mid \theta)=\theta^{4}(1-\theta)$
Probability of observing the outcome HHTHH if $\theta=$ prob. of heads.

For a fixed outcome HHTHH, this is a function of θ.

Max Prob of seeing HHTHH

Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data x_{1}, \ldots, x_{n}, find $\hat{\theta}$ such that $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Usually: Solve $\frac{\partial \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\partial \theta}=0$ or $\frac{\partial \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\partial \theta}=0$ [+check it's a max!]

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$ that dataset x_{1}, \ldots, x_{n} is sampled by distribution with parameter θ
- A function of x_{1}, \ldots, x_{n}
- Fixed x_{1}, \ldots, x_{n} : likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ that parameter θ explains dataset x_{1}, \ldots, x_{n}.
- A function of θ

These notions are the same number if we fix both x_{1}, \ldots, x_{n} and θ, but different role/interpretation

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=? ? ?$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations
x_{1}, \ldots, x_{n} is

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln P\left(x_{i} ; \theta\right)
$$

Useful log properties

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \cdot \frac{1}{\theta}-n_{T} \cdot \frac{1}{1-\theta}$
Solving gives
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=0$
$\hat{\theta}=\frac{n_{H}}{n}$
So we need $n_{H} \cdot \frac{1}{\hat{\theta}}-n_{T} \cdot \frac{1}{1-\widehat{\theta}}=0$

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

The Continuous Case

Given n (independent) samples x_{1}, \ldots, x_{n} from (continuous) parametric model $f\left(x_{i} ; \theta\right)$ which is now a family of densities

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{array}{r}
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
\text { Density function! (Why?) }
\end{array}
$$

Why density?

- Density \neq probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model
n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?
[i.e., we are given the promise that the variance is 1]

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example - Gaussian Parameters

Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$ but unknown mean μ

Goal: estimate $\theta=$ mean

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. \log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

