CSE 312 Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)

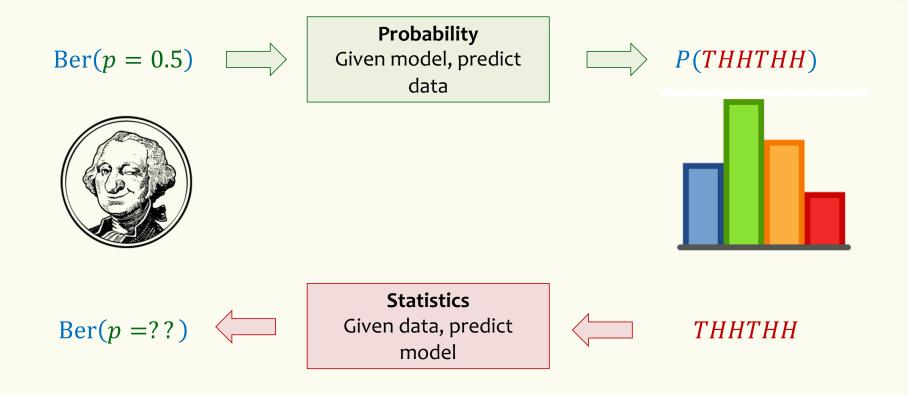
Announcement

- Lecture on Wed is cancel.
- No lecture on Friday. Happy thanks giving!
- Pset 7 is due on Wed
- Pset 8 is out on Wed, due on next Friday

Agenda

- Chernoff Bound
 - Example: Server Load
 - The Union Bound
- Probability vs statistics
 - Estimation

Probability vs Statistics



Recall Formalizing Polls

Population size *N*, true fraction of voting in favor *p*, sample size *n*. **Problem:** We don't know *p*

Polling Procedure

for i = 1, ..., n:

- 1. Pick uniformly random person to call (prob: 1/N)
- 2. Ask them how they will vote

$$X_i = \begin{cases} 1, \\ 0, \end{cases}$$

voting in favor otherwise

Report our estimate of *p*:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

What type of r.v. is <i>X_i</i> ?				
		$\mathbb{E}[X_i]$	$Var(X_i)$	
a.	Bernoulli	p	p(1-p)	

Recall Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown p</u>

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Why is that a good estimate for *p*?

More generally ...

In estimation we....

- Assume: we know the type of the random variable that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

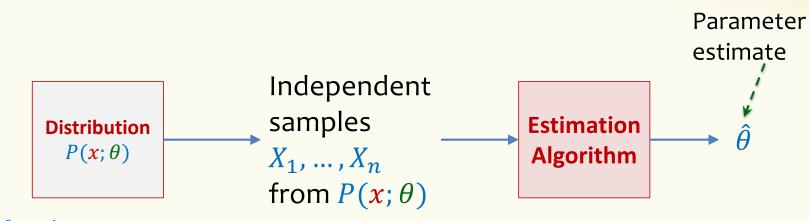
Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions indexed by a parameter θ , described by a two-argument function

 $P(x; \theta) = \text{prob. of outcome } x$ when distribution has parameter θ [i.e., every θ defines a different distribution $\sum_{x} P(x; \theta) = 1$]

Examples

- "Bernoullis": $P(x; \theta = p) = \begin{cases} p & x = 1 \\ 1 p & x = 0 \end{cases}$
- "Geometrics": $P(i; \theta = p) = (1 p)^{i-1}p$ for $i \in \mathbb{N}$



Statistics: Parameter Estimation – Workflow

 $\theta = \underline{unknown} parameter$

Example: coin flip distribution with unknown θ = probability of heads

Observation: HTTHHHHTHTHTHTHTHTHTHTHT

Goal: Estimate

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence flips

TTHTHTTH

Given this data, what would you estimate p is?					
Pol	l: <u>pollev.com/rachel312</u>				
a.	1/2				
b.	5/8				
с.	3/8				
d.	1/4				

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

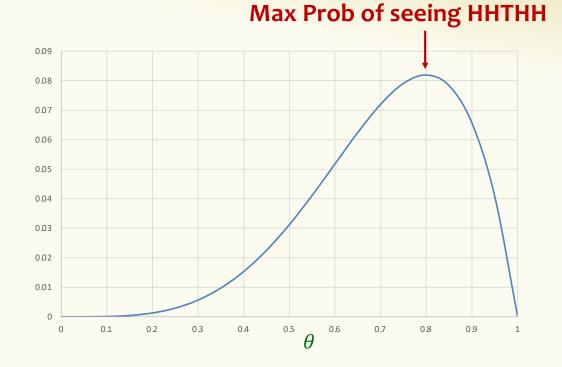
Likelihood

Say we see outcome *HHTHH*.

 $\mathcal{L}(HHTHH \mid \theta) = \theta^4(1 - \theta)$

Probability of observing the outcome *HHTHH* if θ = prob. of heads.

For a fixed outcome HHTHH, this is a function of θ .



Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n P(x_i; \theta)$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, \ldots, x_n \mid \hat{\theta})$ is maximized!

$$\hat{\theta} = \operatorname{argmax}_{\theta} \mathcal{L}(x_1, \dots, x_n \mid \theta)$$
Usually: Solve $\frac{\partial \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ or $\frac{\partial \ln \mathcal{L}(x_1, \dots, x_n \mid \theta)}{\partial \theta} = 0$ [+check it's a max!] ₁₄

Likelihood vs. Probability

- Fixed θ : **probability** $\prod_{i=1}^{n} P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ
 - A function of x_1, \ldots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> $x_1, ..., x_n$ and θ , but different role/interpretation

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1,\ldots,x_n|\theta) = \theta^{n_H} (1-\theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n | \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\ln \mathcal{L}(x_1, \dots, x_n | \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$

Useful log properties

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

17

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails – i.e., $n_H + n_T = n$ **Goal:** estimate θ = prob. heads.

$$\mathcal{L}(x_{1}, \dots, x_{n} | \theta) = \theta^{n_{H}} (1 - \theta)^{n_{T}}$$

$$\ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \ln \theta + n_{T} \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta}$$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = 0$
So we need $n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta} = 0$

$$\int_{18} \theta^{n_{H}} \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta} = 0$$

General Recipe

- 1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

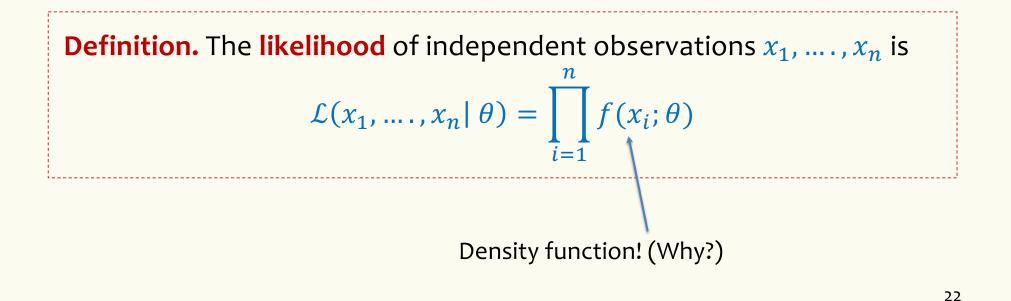
Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE 🗲

The Continuous Case

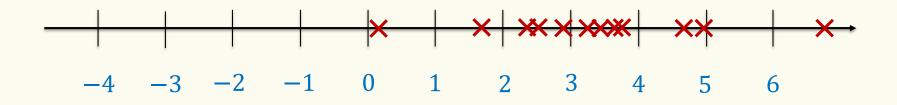
Given *n* (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of densities



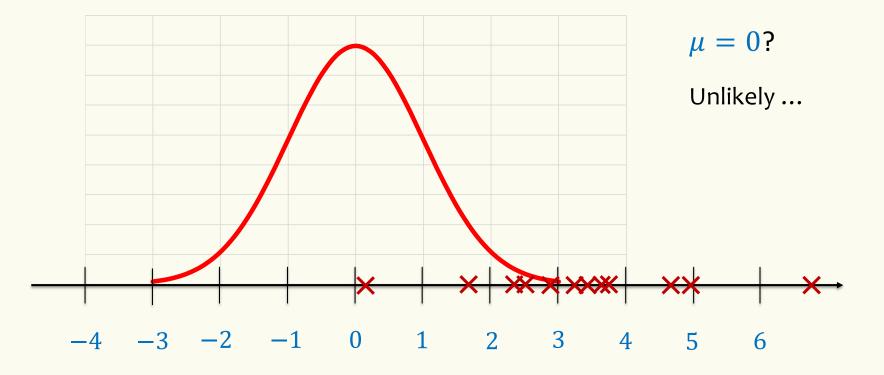
Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

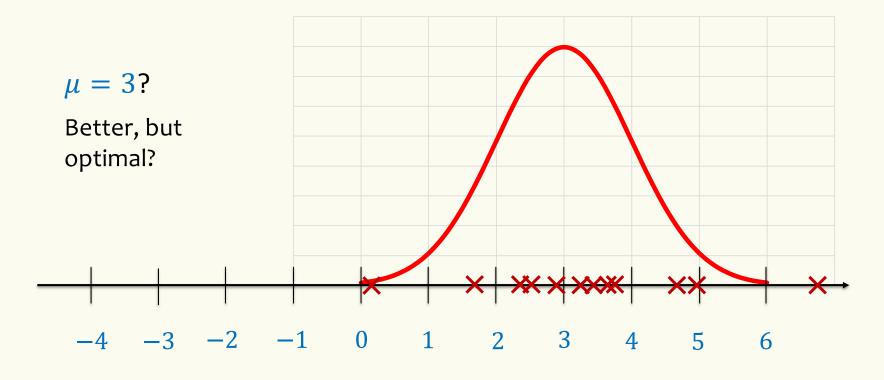
n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ </u>? [i.e., we are given the <u>promise</u> that the variance is 1]



n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ </u>?



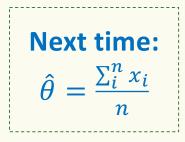
n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?



Example – Gaussian Parameters

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$ but unknown mean μ

Goal: estimate θ = mean



In other words, MLE is the sample mean of the data.

General Recipe

1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.