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Foundations of Computing II
Lecture 24: Markov Chains
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So far: probability for “single-shot” processes
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More generally: randomness can enter over many steps and 
depend on previous outcomes
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Definition. A discrete-time stochastic process (DTSP) is a sequence of 
random variables 𝑋(#), 𝑋(%), 𝑋(&), . . .	where 𝑋(') is the value at time 𝑡.

Today: 
A very special type of DTSP 
called Markov Chains 



What happens when I start working on 312…
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time 𝑡 = 0 



312 work habits

How do we interpret this diagram?

At each time step 𝑡
– I can be in one of 3 states
•  Work, Surf, Email

– If I am in some state 𝑠 at time 𝑡 
• the labels of out-edges of 𝑠 give the probabilities of my moving 

to each of the states at time 𝑡 + 1 (as well as staying the same)
–   so labels on out-edges sum to 1
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e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at 
the next time step, but I will never be in state Surf in the next step.

This kind of 
random process 
is called a 
Markov Chain



Many interesting questions about Markov Chains

6

1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2? 

Given:  In state Work at time 𝑡 = 0

Define variable 𝑋 '  to be state I am in at time 𝑡

𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎



Many interesting questions about Markov Chains

7

1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2? 

Given:  In state Work at time 𝑡 = 0

Define variable 𝑋 '  to be state I am in at time 𝑡

𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =



An organized way to understand the distribution of 𝑋 ;
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𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =

Write as a tuple (𝑞"
! , 𝑞#

! , 𝑞$
! ) a.k.a. a row vector:

[𝑞"
! , 𝑞#

! , 𝑞$
! ]



An organized way to understand the distribution of 𝑋 ;
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𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

Write as a “transition probability matrix” 𝑴
• one row/col per state.  Row=now, Col=next
• each row sums to 1  

𝑴



An organized way to understand the distribution of 𝑋 ;
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[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

𝑞#
& = 𝟎. 𝟔

𝑞$
& = 𝟎

𝑞"
& = 𝟎. 𝟒

𝑞#
' = 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

𝑞$
' = 𝟎. 𝟒 ⋅ 0	 + 𝟎. 𝟔 ⋅ 0.3 = 0	 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
' = 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

𝑴



An organized way to understand the distribution of 𝑋 ;
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𝑞"
! ⋅ 0.4 + 𝑞#

! ⋅ 0.1 + 𝑞$
! ⋅ 0.5 =	 𝑞"

!%&  

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

Vector-matrix 
multiplication

𝑞"
! ⋅ 0.6 + 𝑞#

! ⋅ 0.6 + 𝑞$
! ⋅ 0     =	 𝑞#

!%&  

𝑞"
! ⋅ 0	 + 𝑞#

! ⋅ 0.3 + 𝑞$
! ⋅ 0.5  =	 𝑞$

!%&  

𝑞#
& = 𝟎. 𝟔

𝑞$
& = 𝟎

𝑞"
& = 𝟎. 𝟒

𝑞#
' = 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

𝑞$
' = 𝟎. 𝟒 ⋅ 0	 + 𝟎. 𝟔 ⋅ 0.3 = 0	 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
' = 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

𝑴



An organized way to understand the distribution of 𝑋 ;
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𝑞"
! ⋅ 0.4 + 𝑞#

! ⋅ 0.1 + 𝑞$
! ⋅ 0.5 =	 𝑞"

!%&  

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

Vector-matrix 
multiplication

𝑞"
! ⋅ 0.6 + 𝑞#

! ⋅ 0.6 + 𝑞$
! ⋅ 0     =	 𝑞#

!%&  

𝑞"
! ⋅ 0	 + 𝑞#

! ⋅ 0.3 + 𝑞$
! ⋅ 0.5  =	 𝑞$

!%&  

𝑴

Write 𝒒 ! = [𝑞"
! , 𝑞#

! , 𝑞$
! ] Then for all 𝑡 ≥ 0,  𝒒 !%& = 𝒒 ! 𝑴 

So 𝒒 & = 𝒒 ( 𝑴
      𝒒 ' = 𝒒 & 𝑴 = (𝒒 ( 𝑴)𝑴 = 𝒒 ( 𝑴'

      …



By induction … we can derive
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 ; = 𝒒 B 𝑴; for all 𝑡 ≥ 0 



Another example:
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Clear Overcast

0.7 0.3 0.5

0.5

Suppose that 𝒒 ( = 𝑞)
( , 𝑞*

( = [0,1]

We have 𝑴 = 0.7 0.3
0.5 0.5

Poll:  pollev.com/rachel312
What is 𝒒 '  ?
a. 0.3, 0.7
b. 0.6, 0.4
c. 0.7, 0.3
d. 0.5, 0.5
e. 0.4, 0.6



Brain Break 15Creative Commons License



Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2?

3. What is the probability that I am in state 𝑠 at some 
time 𝑡 far in the future?

Given:  In state Work at time 𝑡 = 0

𝒒 ; = 𝒒 B 𝑴; for all 𝑡 ≥ 0 

What does 𝑴'  look like for really big 𝑡 ? 



𝑴; as 𝑡 grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 ' = 𝒒 # 𝑴'  for all 𝑡 ≥ 0 

𝑴' 𝑴+

𝑴&( 𝑴+(

𝑴,(

What does this 
say about 𝒒 ; ?



What does this say about 𝒒 ! = 𝒒 " 𝑴! ?

• Note that no matter what probability distribution 𝒒 B  is …    
 𝒒 𝟎 𝑴; is just a weighted average of the rows of 𝑴;

• If every row of 𝑴; were exactly the same …that would 
mean that 𝒒 𝟎 𝑴; would be equal to the common row
– So 𝒒 '  wouldn’t depend on 𝒒 𝟎

• The rows aren’t exactly the same but they are very close
– So 𝒒 '  barely depends on 𝒒 𝟎  after very few steps
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Observation

If 𝒒(;EF) = 𝒒(;) then it will never change again!

Called a stationary distribution and has a special name 
	 𝝅 = (𝜋G, 𝜋H, 𝜋I)

Solution to 𝝅	 = 	 𝝅	𝑴
19



Solving for Stationary Distribution
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𝑴 =
.4 .6 0
.1 .6 .3
.5 0 .5

 

    As 𝑡 → ∞, 	 𝒒(') → 𝝅   no matter what distribution 𝒒 # 	is !!

Stationary Distribution satisfies
•  𝝅	 = 	 𝝅𝑴, where  𝝅 = (𝜋2 , 𝜋3 , 𝜋4)
•  𝜋2 + 𝜋3 + 𝜋4 = 1

è 𝜋2 = %#
56
, 	 𝜋3=

%7
56
, 	 𝜋4=

8
56



Markov Chains in general

• A set of 𝑛 states {1, 2, 3, … 	𝑛}
• The state at time 𝑡 is denoted by 𝑋(;)

• A transition matrix 𝑴, dimension 𝑛×	𝑛	
𝑴𝑖𝑗 = 𝑃 𝑋 ;EF = 𝑗	 𝑋(;)	 = 𝑖)

•  𝒒(;) = (𝑞F
; ,	𝑞J

; , … , 𝑞K
; ) where 𝑞L

; = 𝑃(𝑋(;)	 = 𝑖)
• Transition: LTP ⇒ 𝒒(;EF) = 𝒒(;)	𝑴  so 𝒒(;) = 𝒒(B)	𝑴;

• A stationary distribution 𝝅 is the solution to: 
𝝅	 = 	 𝝅	𝑴,  normalized so that ΣL∈[K]𝜋𝑖 = 1
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The Fundamental Theorem of Markov Chains 

Theorem. Any Markov chain that is 
• irreducible* and
• aperiodic*

has a unique stationary distribution 𝝅.
Moreover, as 𝑡 → ∞, for	all	𝑖, 𝑗, 	 𝑴LN

; = 𝜋N
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*These concepts are way beyond us but they turn out to cover a very large class of               
Markov chains of practical importance.


