CSE 312

Foundations of Computing II

Lecture 24: Markov Chains

So far: probability for "single-shot" processes
Random

Process \rightarrow| Outcome |
| :---: |
| Distribution |
| D |

2

More generally: randomness can enter over many steps and

What happens when I start working on 312...

312 work habits

How do we interpret this diagram?

At each time step t

- I can be in one of 3 states
- Work, Surf, Email

This kind of random process is called a
Markov Chain

- If I am in some state s at time t)
- the labels of out-edges of s give the probabilities of my moving to each of the states at time $t+1$ (as well as staying the same)
- so labels on out-edges sum to 1
e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at the next time step, but I will never be in state Surf in the next step.

Many interesting questions about Markov Chains

1. What is the probability that I am in state s at time 1 ?
2. What is the probability that I am in state s at time 2? Define variable $X^{(t)}$ to be state I am in at time t

Given: In state Work at time $t=0$

t	0	1	
$P\left(X^{(t)}=\right.$ Work $)$	$\mathbf{1})$	$\underline{\mathbf{0 . 4}}$	
$P\left(X^{(t)}=\right.$ Surf $)$	$\mathbf{0}$	$\underline{\mathbf{0 . 6}}$	
$P\left(X^{(t)}=\right.$ Email $)$	$\mathbf{0}$	$\mathbf{0}$	

Many interesting questions about Markov Chains

Given: In state Work at time $t=0$

An organized way to understand the distribution of $X^{(t)}$

An organized way torunderstand the distribution of

Write as a "transition probability matrix" M

- one row/col per state. Row=now, Col=next
- each row sums to 1

t	0	1	2
$q_{W}^{(t)}=P\left(X^{(t)}=\right.$ Work $)$	$\mathbf{1}$	$\mathbf{0 . 4}$	$=\mathbf{0 . 4} \cdot 0.4+\mathbf{0 . 6} \cdot 0.1=0.16+0.06=\mathbf{0 . 2 2}$
$q_{S}^{(t)}=P\left(X^{(t)}=\right.$ Surf $)$	$\mathbf{0}$	$\mathbf{0 . 6}$	$=\mathbf{0 . 4} \cdot 0.6+\mathbf{0 . 6} \cdot 0.6=0.24+0.36=\mathbf{0 . 6 0}$
$q_{E}^{(t)}=P\left(X^{(t)}=\right.$ Email $)$	$\mathbf{0}$	$\mathbf{0}$	$=\mathbf{0 . 4} \cdot 0+\mathbf{0 . 6} \cdot 0.3=0+0.18=\mathbf{0 . 1 8}$

An organized way to understand the distribution of $X^{(t)}$

$$
\left[q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}\right]\left[\begin{array}{ccc}
0.4 & 0.6 & 0 \\
0.1 & 0.6 & 0.3 \\
0.5 & 0 & 0.5
\end{array}\right]=\left[q_{W}^{(t+1)}, q_{S}^{(t+1)}, q_{E}^{(t+1)}\right]
$$

$$
\begin{array}{ll}
q_{W}^{(1)}=\mathbf{0 . 4} & q_{W}^{(2)}=\mathbf{0} . \mathbf{4} \cdot 0.4+\mathbf{0 . 6} \cdot 0.1=0.16+0.06=\mathbf{0} .22 \\
q_{S}^{(1)}=\mathbf{0 . 6} & q_{S}^{(2)}=\mathbf{0 . 4} \cdot 0.6+\mathbf{0 . 6} \cdot 0.6=0.24+0.36=\mathbf{0 . 6 0} \\
q_{E}^{(1)}=\mathbf{0} & q_{E}^{(2)}=\mathbf{0 . 4} \cdot 0+\mathbf{0 . 6} \cdot 0.3=0 \quad+0.18=\mathbf{0 . 1 8}
\end{array}
$$

An organized way to understand the distribution of $X^{(t)}$

$$
\begin{array}{ll}
q_{W}^{(1)}=\mathbf{0 . 4} & q_{W}^{(2)}=\mathbf{0} .4 \cdot 0.4+\mathbf{0 . 6} \cdot 0.1=0.16+0.06=\mathbf{0 . 2 2} \\
q_{S}^{(1)}=\mathbf{0 . 6} & q_{S}^{(2)}=\mathbf{0 . 4} \cdot 0.6+\mathbf{0 . 6} \cdot 0.6=0.24+0.36=\mathbf{0 . 6 0} \\
q_{E}^{(1)}=\mathbf{0} & q_{E}^{(2)}=\mathbf{0 . 4} \cdot 0+\mathbf{0 . 6} \cdot 0.3=0 \quad+0.18=\mathbf{0 . 1 8}
\end{array}
$$

An organized way to understand the distribution of $X^{(t)}$

$$
\begin{aligned}
{\left[q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}\right] }
\end{aligned}\left[\begin{array}{ccc}
0.4 & 0.6 & 0 \\
0.1 & 0.6 & 0.3 \\
0.5 & 0 & 0.5
\end{array}\right]=\left[q_{W}^{(t+1)}, q_{S}^{(t+1)}, q_{E}^{(t+1)}\right]
$$

Write $\boldsymbol{q}^{(t)}=\left[q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}\right] \quad$ Then for all $t \geq 0, \underline{\boldsymbol{q}^{(t+1)}}=\underline{\boldsymbol{q}}^{(t)} \underline{\boldsymbol{M}}$
So $\boldsymbol{q}^{(1)}=\boldsymbol{q}^{(0)} \boldsymbol{M}$

$$
\overrightarrow{\boldsymbol{q}}^{(2)}=\underline{\boldsymbol{q}^{(1)} \boldsymbol{M}}=\left(\boldsymbol{q}^{(0)} \boldsymbol{M}\right) \boldsymbol{M}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{2}
$$

By induction ... we can derive

Another example:

Suppose that $\underline{\boldsymbol{q}^{(0)}}=\left[\underline{\left.q_{C}^{(0)}, q_{0}^{(0)}\right]}=[0,11)\right.$
We have $M=\begin{array}{ll}0.7 & 0.3 \\ 0.5 & 0.5\end{array} \quad[0.1] \mathrm{M}^{2}$

Poll: pollev.com/rachel312
$[0,1]\left[\begin{array}{cc}0.7 & 0.3 \\ 0.5 & 0.8\end{array}\right]$
What is $\boldsymbol{q}^{(2)}$?
a. $[0.3,0.7]$

$$
\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0.7 & 0.3 \\
0.5 & 0.5
\end{array}\right]
$$

c. $[0.7,0.3]$
d. $[0.5,0.5]$
e. $[0.4,0.6]$

Many interesting questions about Markov Chains

Given: In state Work at time $t=0$

1. What is the probability that I am in state s at time 1 ?
2. What is the probability that I am in state s at time 2?
3. What is the probability that I am in state s at some time t far in the future?

$$
\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t} \text { for all } t \geq 0
$$

What does M^{t} look like for really big t ?

M^{t} as t grows

$$
\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t} \text { for all } t \geq 0
$$

M
$\left.\begin{array}{cccc}\boldsymbol{M}^{10} & \\ W & S & E \\ W \\ S & (.2940 & .4413 & .2648 \\ E & .2942 & .4411 & .2648 \\ .2942 & .4413 & .2648\end{array}\right)$
M^{30}
W
S
E

What does this say about $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t}$?

- Note that no matter what probability distribution $\boldsymbol{g}^{(0)}$ is ... $q^{\left(t^{+}\right)}=\underline{q}^{(0)} M^{t}$ is just a weighted average of the rows of M^{t}
- If every row of M^{t} were exactly the same ... that would mean that $q^{(0)} M^{t}$ would be equal to the common row
- So $q^{(t)}$ wouldn't depend on $q^{(0)}$
- The rows aren't exactly the same but they are very close
- So $\boldsymbol{q}^{(t)}$ barely depends on $\boldsymbol{q}^{(0)}$ after very few steps

Observation

$$
q^{t+1}=q^{+} M=q^{t}
$$

If $\boldsymbol{q}^{(t+1)} \boldsymbol{q}^{(t)}$ then it will never change again!

$$
q^{t+2}=q^{t+1} M=\left(q^{t} M\right)
$$

Called a stationary distribution and has a special name

$$
\boldsymbol{\pi}=\left(\pi_{W}, \pi_{S}, \pi_{E}\right)
$$

Solution to $\pi=\pi M$

Solving for Stationary Distribution

As $t \rightarrow \infty, \quad \boldsymbol{q}^{(t)} \rightarrow \boldsymbol{\pi}$ no matter what distribution $\boldsymbol{q}^{(0)}$ is !!

Markov Chains in general

- A set of n states $\{1,2,3, \ldots n\}$
- The state at time t is denoted by $\left(X^{(t)}\right.$
- A transition matrix M, dimension $n \times n$

$$
\boldsymbol{M}_{i j}=P\left(\underline{X}^{(t+1)}=j \quad \underline{X}^{(t)}=i\right)
$$

- $\underline{q}^{(t)}=\left(q_{1}^{(t)}, q_{2}^{(t)}, \ldots, q_{n}^{(t)}\right)$ where $q_{i}^{(t)}=P\left(X^{(t)}=i\right)$
- Transition: LTP $=\boldsymbol{q}^{(t+1)}=\boldsymbol{q}^{(t)} \boldsymbol{M}$ so $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{M}^{t}$
- A stationary distribution π is the solution to:

$$
\frac{2 \pi=2 \pi M_{2}}{\lceil\pi]} \text { normalized so that } \underline{\sum_{i \in[n]} \pi_{i}=1}
$$

The Fundamental Theorem of Markov Chains

Theorem. Any-Markov chain that is

- irreducible* and
- aperiodic*

has a unique stationary distribution π.
Moreover, as $\underline{t \rightarrow \infty}$, for all $i, j, \operatorname{Ma}_{i j}^{t}=\pi_{j}$

*These concepts are way beyond us but they turn out to cover a very large class of Markov chains of practical importance.

