CSE 312 Foundations of Computing II

Lecture 24: Markov Chains

So far: probability for "single-shot" processes

What happens when I start working on 312...

312 work habits

How do we interpret this diagram?

At each time step t

- I can be in one of 3 states
 - Work, Surf, Email
- If I am in some state s at time t
 - the labels of out-edges of s give the probabilities of my moving to each of the states at time t + 1 (as well as staying the same)
 - so labels on out-edges sum to 1

e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at the next time step, but I will never be in state Surf in the next step.

+

This kind of random process is called a Markov Chain

Many interesting questions about Markov Chains

- 1. What is the probability that I am in state *s* at time 1?
- 2. What is the probability that I am in state *s* at time 2?

Define variable $X^{(t)}$ to be state I am in at time t

Given: In state Work at time t = 0

t	(0)	1	2
$P(X^{(t)} = Work)$		<u>0.4</u>	
$P(X^{(t)} = \text{Surf})$	0	0.6	
$P(X^{(t)} = \text{Email})$	0	0	

Many interesting questions about Markov Chains

Given: In state Work at time t = 0

What is the probability that I am in state *s* at time 2? 2.

Write as a tuple $(q_W^{(t)}, q_S^{(t)}, q_E^{(t)})$ a.k.a. a row vector: $[q_W^{(t)}, q_S^{(t)}, q_E^{(t)}]$

	0	1 2		
$(q_W^{(t)}) = P(X^{(t)} = Work)$	1	0.4	$= 0.4 \cdot 0.4 + 0.6 \cdot 0.1 = 0.16 + 0.06 = 0.22$	
$\underline{q}_{\underline{S}}^{(t)} = P(X^{(t)} = \text{Surf})$	0	0.6	$= 0.4 \cdot 0.6 + 0.6 \cdot 0.6 = 0.24 + 0.36 = 0.60$	
$\underbrace{q_E^{(t)}}_{L} = P(X^{(t)} = \text{Email})$	0	0	$= 0.4 \cdot 0 + 0.6 \cdot 0.3 = 0 + 0.18 = 0.18$	
			8	

• each row sums to 1

t	0	1	2
$q_W^{(t)} = P(X^{(t)} = Work)$	1	0.4	$= 0.4 \cdot 0.4 + 0.6 \cdot 0.1 = 0.16 + 0.06 = 0.22$
$q_S^{(t)} = P(X^{(t)} = \text{Surf})$	0	0.6	$= 0.4 \cdot 0.6 + 0.6 \cdot 0.6 = 0.24 + 0.36 = 0.60$
$q_E^{(t)} = P(X^{(t)} = \text{Email})$	0	0	$= 0.4 \cdot 0 + 0.6 \cdot 0.3 = 0 + 0.18 = 0.18$

$$\begin{bmatrix} q_W^{(t)}, q_S^{(t)}, q_E^{(t)} \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0 & 0.5 \end{bmatrix} = \begin{bmatrix} q_W^{(t+1)}, q_S^{(t+1)}, q_E^{(t+1)} \end{bmatrix}$$

$$q_W^{(1)} = \mathbf{0.4} \qquad q_W^{(2)} = \mathbf{0.4} \cdot 0.4 + \mathbf{0.6} \cdot 0.1 = 0.16 + 0.06 = \mathbf{0.22}$$

$$q_S^{(1)} = \mathbf{0.6} \qquad q_S^{(2)} = \mathbf{0.4} \cdot 0.6 + \mathbf{0.6} \cdot 0.6 = 0.24 + 0.36 = \mathbf{0.60}$$

$$q_E^{(1)} = \mathbf{0} \qquad q_E^{(2)} = \mathbf{0.4} \cdot 0 + \mathbf{0.6} \cdot 0.3 = 0 + 0.18 = \mathbf{0.18}$$

$$q_W^{(1)} = \mathbf{0.4} \qquad q_W^{(2)} = \mathbf{0.4} \cdot 0.4 + \mathbf{0.6} \cdot 0.1 = 0.16 + 0.06 = \mathbf{0.22}$$

$$q_S^{(1)} = \mathbf{0.6} \qquad q_S^{(2)} = \mathbf{0.4} \cdot 0.6 + \mathbf{0.6} \cdot 0.6 = 0.24 + 0.36 = \mathbf{0.60}$$

$$q_E^{(1)} = \mathbf{0} \qquad q_E^{(2)} = \mathbf{0.4} \cdot 0 + \mathbf{0.6} \cdot 0.3 = 0 + 0.18 = \mathbf{0.18}$$

$$\begin{bmatrix} q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)} \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0 & 0.5 \end{bmatrix} = \begin{bmatrix} q_{W}^{(t+1)}, q_{S}^{(t+1)}, q_{E}^{(t+1)} \end{bmatrix}$$

$$\begin{bmatrix} q_{W}^{(t)}, 0.4 + q_{S}^{(t)} \cdot 0.1 + q_{E}^{(t)} \cdot 0.5 = q_{W}^{(t+1)} \end{bmatrix}$$

$$\begin{bmatrix} q_{W}^{(t)} \cdot 0.4 + q_{S}^{(t)} \cdot 0.1 + q_{E}^{(t)} \cdot 0.5 = q_{W}^{(t+1)} \end{bmatrix}$$

$$\begin{bmatrix} q_{W}^{(t)} \cdot 0.6 + q_{S}^{(t)} \cdot 0.6 + q_{E}^{(t)} \cdot 0 = q_{S}^{(t+1)} \\ q_{W}^{(t)} \cdot 0 + q_{S}^{(t)} \cdot 0.3 + q_{E}^{(t)} \cdot 0.5 = q_{E}^{(t+1)} \end{bmatrix}$$

$$\begin{bmatrix} Write q^{(t)} = [q_{W}^{(t)}, q_{S}^{(t)}, q_{E}^{(t)}] \\ Then for all t \ge 0, q^{(t+1)} = q^{(t)}M \end{bmatrix}$$

So
$$q^{(1)} = q^{(0)}M$$

 $\overline{q^{(2)}} = \overline{q^{(1)}M} = (\underline{q^{(0)}M})M = \underline{q^{(0)}M^2}$
...

By induction ... we can derive

		M		
	0.4	0.6	ן 0	
	0.1	0.6	0.3	
	0.5	0	0.5	
$\boldsymbol{q}^{(t)} = \boldsymbol{q}^{(0)}$	M ^t ·	for a	all t 2	≥ 0

Another example:

Many interesting questions about Markov Chains

Given: In state Work at time t = 0

- 1. What is the probability that I am in state *s* at time 1?
- 2. What is the probability that I am in state *s* at time 2?
- 3. What is the probability that I am in state *s* at some time *t* far in the future?

$$\boldsymbol{q}^{(t)} = \boldsymbol{q}^{(0)} \boldsymbol{M}^t$$
 for all $t \ge 0$

What does M^t look like for really big t?

$\boldsymbol{q}^{(t)} = \boldsymbol{q}^{(0)} \boldsymbol{M}^t$ for all $t \ge 0$ M^t as t grows M^3 M^2 M SEWWESSurf $\begin{pmatrix} .22 & .6 & .18 \\ .25 & .42 & .33 \\ .45 & .3 & .25 \end{pmatrix}$.492.238 .307 .270WS 0 0.3 [0.4] 0.6 WSEWork .402 .2910.6 0.1 .215 E.335 .450Emai L0.5 0 0.5 M^{10} M^{30} SSWEWE.4413 .44117647059 .26470588235 W.2940.2648 W.29411764705 SS.4411 .2648.2942 .29411764706 .44117647058 .26470588235 E.4413 .2648.2942E29411764706 .44117647059 .26470588235 M⁶⁰ EWhat does this ['say about $q^{(t)}$? [\circ , 1, \circ] $M^{\circ\circ} = [$ W441176470588235 .264705882352941 .294117647058823S294117647068823 .264705882352941 4411 76470588235 294117647068823 E76470588235 .264705882352941441117

What does this say about $q^{(t)} = q^{(0)}M^t$?

- Note that no matter what probability distribution $\underline{q}^{(0)}$ is ... $q^{(0)}M^{t}$ is just a weighted average of the rows of M^{t}
- If every row of M^t were exactly the same ... that would mean that q⁽⁰⁾ M^t would be equal to the common row
 So q^(t) wouldn't depend on q⁽⁰⁾
- The rows aren't exactly the same but they are very close
 So q^(t) barely depends on q⁽⁰⁾ after very few steps

Called a **stationary distribution** and has a special name $\pi = (\pi_W, \pi_S, \pi_E)$

Solving for Stationary Distribution

Markov Chains in general

- A set of *n* states {1, 2, 3, ... *n*}
- The state at time t is denoted by $X^{(t)}$
- A transition matrix M, dimension $n \times n$ $M_{ij} \neq P(X^{(t+1)} = j \mid X^{(t)} = i) \forall$
- $q^{(t)} = (q_1^{(t)}, q_2^{(t)}, \dots, q_n^{(t)})$ where $q_i^{(t)} = P(X^{(t)} = i)$
- Transition: LTP = $q^{(t+1)} = q^{(t)}M$ so $q^{(t)} = q^{(0)}M^t$
- A **stationary distribution** *π* is the solution to:

$$2\pi = 2\pi M$$
, normalized so that $\sum_{i \in [n]} \pi_i = 1$

The Fundamental Theorem of Markov Chains

*These concepts are way beyond us but they turn out to cover a very large class of Markov chains of practical importance.