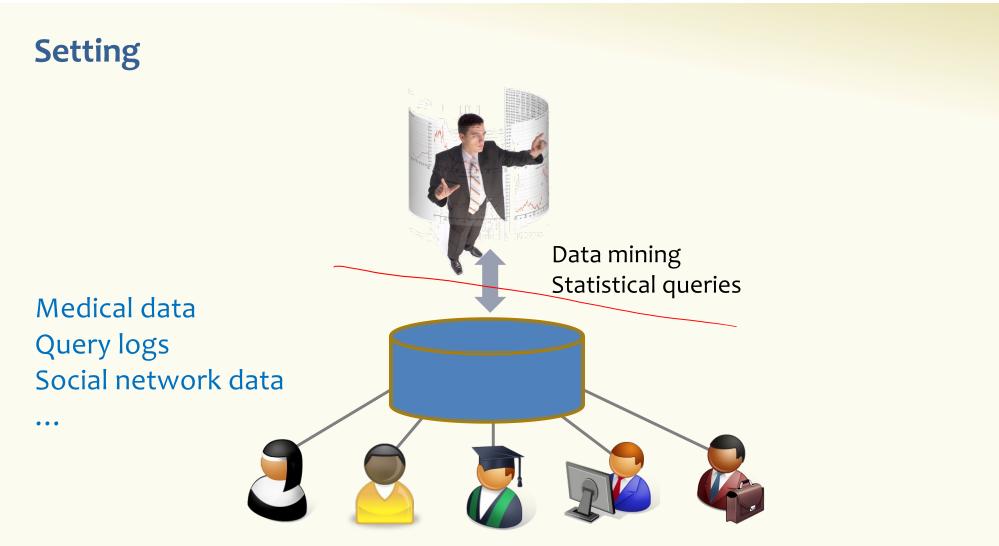
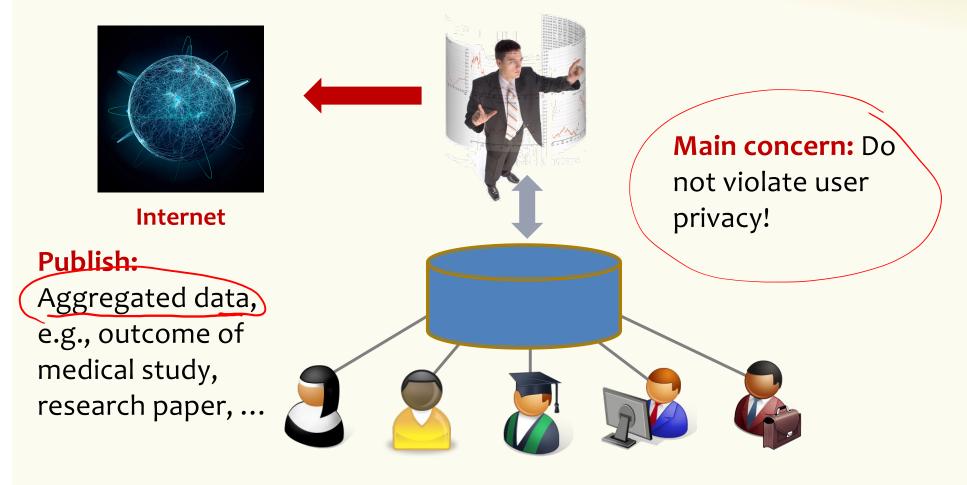
CSE 312 Foundations of Computing II

Lecture 26: Differential Privacy



Setting – Data Release



[Sweeney 'oo]

Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - -<u>Relevant attributes removed</u>, but ZIP, birth date, gender available
 - Considered "safe" practice
- Public voter registration record "^{Linkage}"
 Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time

He was the only man in his zip code with his birth date ...
+More attacks! (cf. Netflix grand prize challenge!)

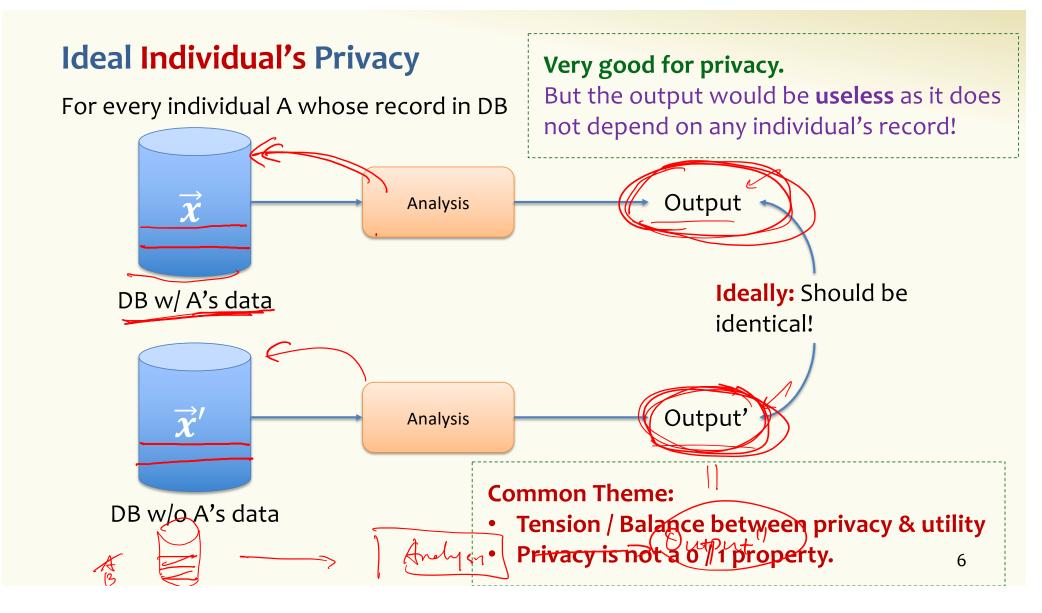
One way out? Differential Privacy

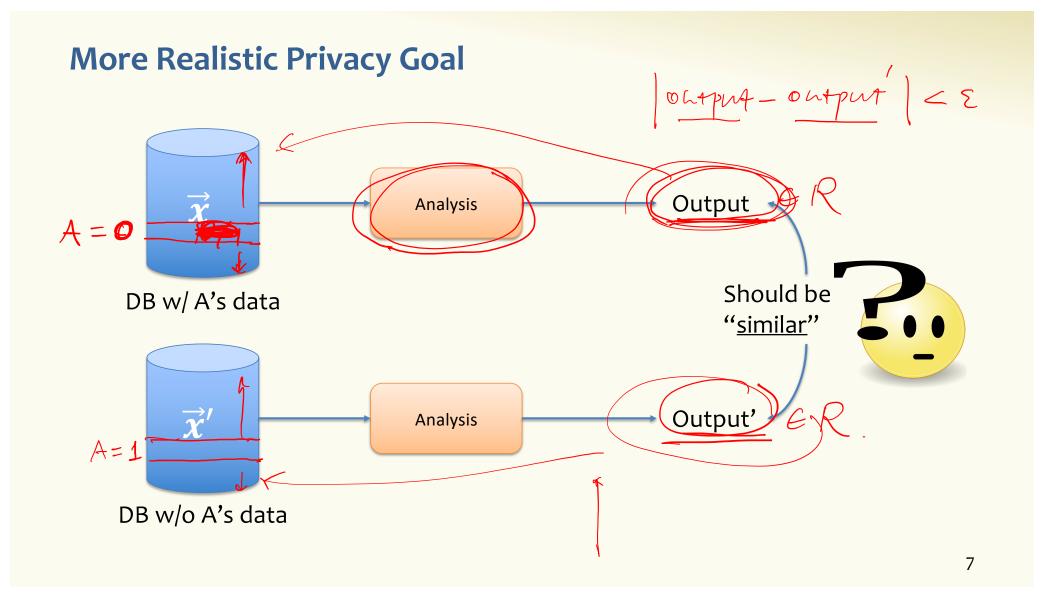
• A formal definition of privacy

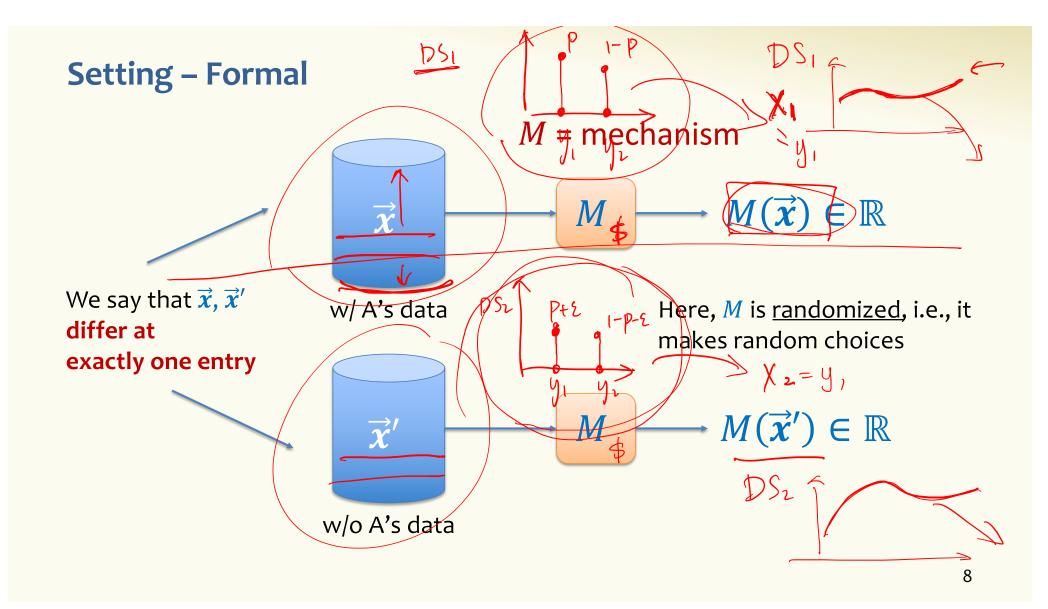
– Satisfied in systems deployed by Google, Uber, Apple, ...

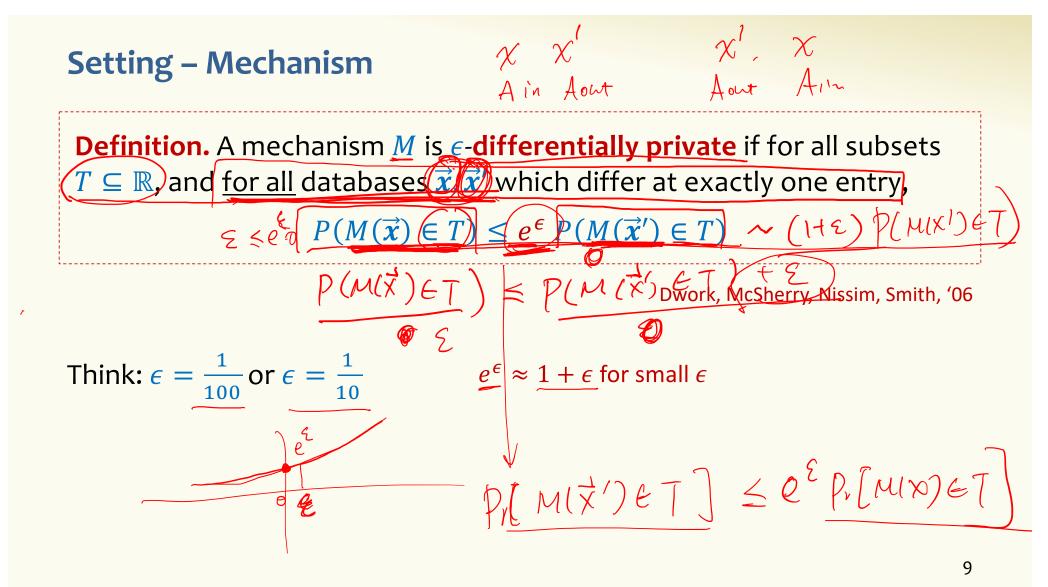
- Used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.

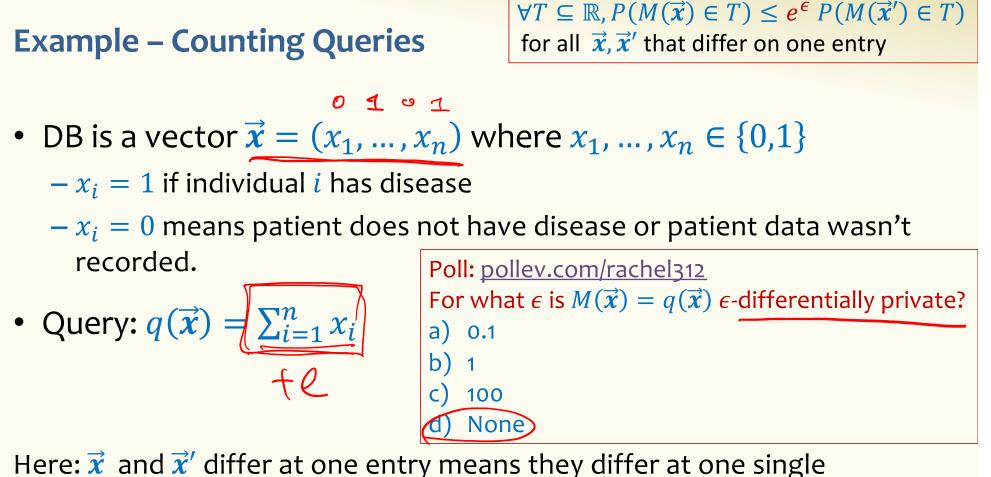
- Even with side information!







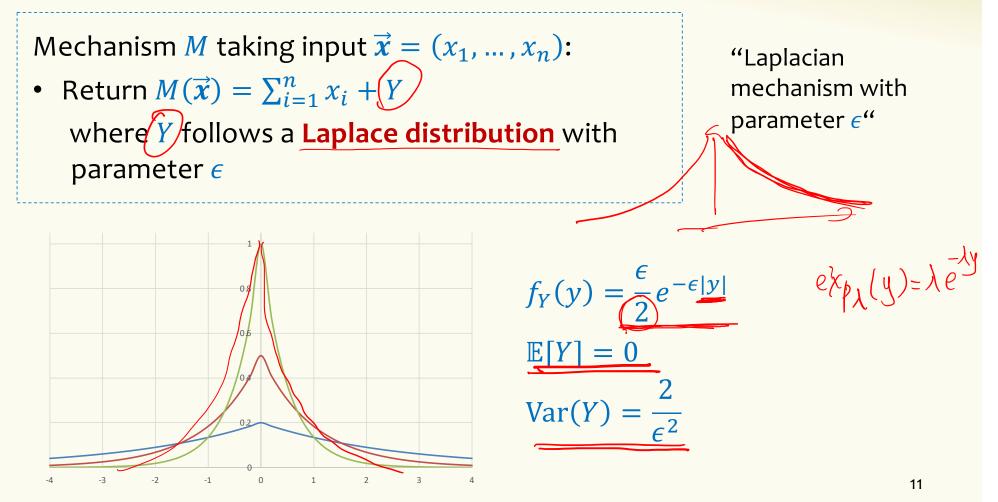




coordinate, e.g., $x_i = 1$ and $x'_i = 0$

10

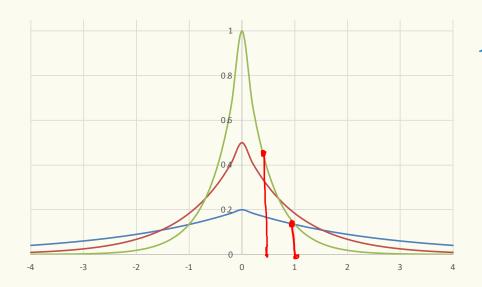
A solution – Laplacian Noise



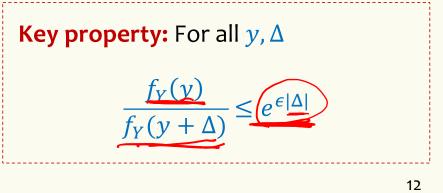
A solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$ where Y follows a Laplace distribution with parameter ϵ "Laplacian mechanism with parameter ϵ "



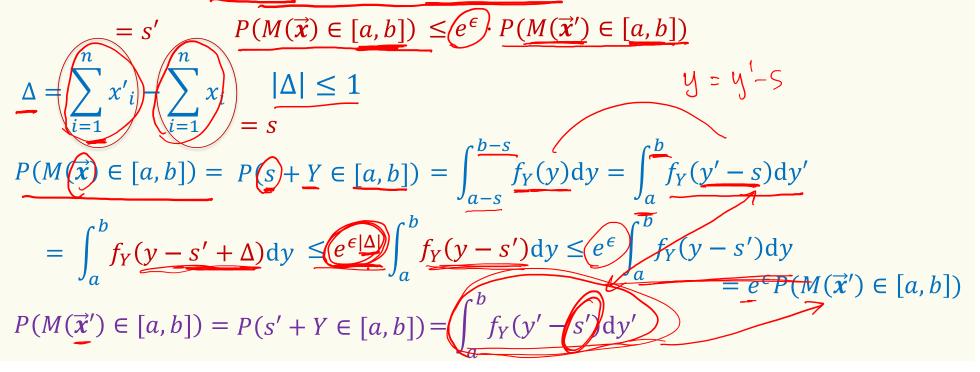
$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$



Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ -differential privacy

Goal to show: $\forall \vec{x}, \vec{x}'$ differing at one entry, $\forall [a, b]$



How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$

- $\mathbb{E}\left[\sum_{i=1}^{n} x_i + Y\right] = \sum_{i=1}^{n} x_i + \mathbb{E}\left[Y\right] = \sum_{i=1}^{n} x_i$
- $\operatorname{Var}(\sum_{i=1}^{n} x_i + Y) = \operatorname{Var}(Y) = \frac{2}{\epsilon^2}$

This is accurate enough for large enough ϵ !

Differential Privacy – What else can we compute?

. . .

- Statistics: counts, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.

Differential Privacy – Nice Properties

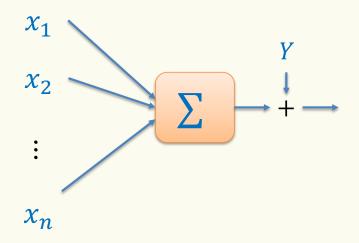
• **Group privacy:** If M is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and <u>for all</u> databases \vec{x}, \vec{x}' which differ at (at most) k entries,

$P(M(\vec{x}) \in T) \le e^{k\epsilon} P(M(\vec{x}') \in T)$

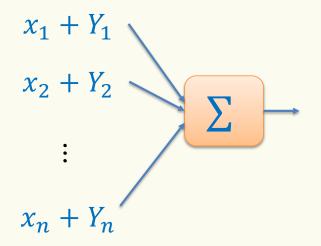
- Composition: If we apply two
 e-DP mechanisms to data, combined output is 2*e*-DP.
 - How much can we allow ϵ to grow? (So-called "privacy budget.")
- **Post-processing:** Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism



What if we don't trust aggregator?



Solution: Add noise locally!

For a given parameter α

Example – Randomized Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• For all i = 1, ..., n:

$$-y_i = x_i$$
 w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$

$$-\hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965

Example – Randomize Response

For a given parameter α

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$: • For all i = 1, ..., n: - $y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$. $- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$ • Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$ **Theorem.** Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon} - 1}{e^{\epsilon} + 1}$. Fact 1. $\mathbb{E}[M(\vec{x})] = \sum_{i=1}^{n} x_i$ Fact 2. $Var(M(\vec{x})) \approx \frac{n}{\epsilon^2}$

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose ϵ ?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753
 - E.g. Privacy budgets of 2, 4, 8 per application feature, not tiny as assumed. These exponents add up quickly!
- Fairness: Differential privacy hides contribution of small groups, <u>by design</u>
 - How do we avoid excluding minorities?
 - Very hard problem!
- **Ethics:** Does differential privacy incentivize data collection?

Literature

• Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".

– <u>https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf</u>

<u>https://privacytools.seas.harvard.edu/</u>