CSE 312 Foundations of Computing II

Lecture 27: Zero-Knowledge

• Please fill out the class evaluation by 12/10 Sunday !!!!!!!

- Having your feedback is very important.
- https://uw.iasystem.org/survey/279647

Classical Proofs

Euclid The infinitude of primes

Gauss Fundamental Theorem of algebra

Poussin, Hadamard Prime Number Theorem

Efficiently Verifiable Proofs

Statement *X*: $x_1 + x_1^5 + x_2^7 = 0$, $x_1 - x_2^3 + 100x_1^6 = 0$ has a solution

NP Language: $x \in L$ iff $\exists w V_L(x, w) = 1$

Zero Knowledge Proofs [GMR89]

$$Prover (x)$$
 $Verifier V(x)$

Goal: Prove that a statement *x* is true

without revealing any information other than the validity

Paradoxical?

1. Bob holds the two papers out, Alice sees them

2. Bob secretly swap the papers with ½ probability

3. Bob holds the papers out. Alice guesses if Bob has swapped.

Interactive Proofs (IP)

Fundamental Changes:

- 1. Use interaction
- 2. Use randomness / allow for error probability

Benefits:

- 1. ZK (today)
- 2. Verify way more statements efficiently e.g., verify an exponential time computation in polynomial time.

Interactive Proofs (IP)

A language is a set of <u>true</u> statement $L \subseteq \{0,1\}^*$.

An IP consists of a prover algorithm P and a verifier alg V.

V is efficient – polynomial time in |x| (P may be inefficient)

$$\mathsf{P}_{(x,w)} \stackrel{\text{Verifier}}{\longrightarrow} \mathsf{V}_{(x)} \to b \in \{0,1\}$$

Interactive proof:

- **Correctness:** \forall true statement x, P(x) convinces V(x) always
- Soundness: \forall false statement x, \forall cheating prover P^* (may not follow the honest prover algorithm) V(x) rejects with high probability 1ϵ (e.g., $\epsilon = 0.01$)

Zero Knowledge (ZK) Proofs [GMR89]

Informally: An IP protocol for L is ZK if

 Zero-knowledge: ∀ true statement x, ∀ efficient cheating verifier V* (may not follow the honest verifier algorithm), V*(x) "learns nothing" about w from the interaction

Interactive proof:

- **Correctness:** \forall true statement *x*, P(x) convinces V(x) always
- Soundness: \forall false statement x, \forall cheating prover P^* (may not follow the honest prover algorithm) V(x) rejects with high probability 1ϵ (e.g., $\epsilon = 0.01$)

Graph 3-Coloring

Problem. Given a graph G = (V, E), Can the vertices be colored using one of three colors, so that, no two nodes connected by an edge have the same color?

Graph 3-coloring is NP-complete!

- Statement X: A graph G has a 3-coloring
- Solution W: A valid 3-coloring

Q: For the same graph, are there many valid 3-colorings?

A: Yes, in particular, permuting the colors gives valid coloring

Reduce Soundness Error

Issue: The 3-move protocol has soundness error $\epsilon = 1 - \frac{1}{m}$, where *m* is the number of edges

Solution: Reduce the soundness error by repeating *k* times

By chain rule, $\Pr[V \text{ accepts in all runs } |Col_1 = C_1, \dots Col_k = C_k] \le \left(1 - \frac{1}{m}\right)^k$ By LTP, $\Pr[V \text{ accepts in all runs}] \le \left(1 - \frac{1}{m}\right)^k$

Reduce Soundness Error

Issue: The 3-move protocol has soundness error $\epsilon = 1 - \frac{1}{m}$, where *m* is the number of edges

Solution: Reduce the soundness error by repeating $k = m \cdot \lambda$

- The verifier rejects, as soon as any of these k runs results in rejection
- Soundness error is now $\left(1 \frac{1}{m}\right)^k \le e^{-\frac{1}{m}k} = e^{-\lambda}$

In each run V* learns that the endpoints of one edge can be colored with two different colors.

This is implied by the fact that G can be 3-colored and hence V* learns nothing.

Cryptographic hats

Need a crypto tool s.t.

• Can "commit" to a color, while hiding it

Cryptographic hats

Need a crypto tool s.t.

- Can "commit" to a color, while hiding it
- Later, can "open" to a color, and there is only one color can be opened to