CSE 312

Foundations of Computing II

Lecture 27: Zero-Knowledge

- Please fill out the class evaluation by 12/10 Sunday !!!!!!!
- Having your feedback is very important.
- https://uw.iasystem.org/survey/279647

Classical Proofs

Euclid
The infinitude of primes

Gauss
Fundamental
Theorem
of algebra

Poussin, Hadamard
Prime Number Theorem

Efficiently Verifiable Proofs

Statement $X: x_{1}+x_{1}^{5}+x_{2}^{7}=0, x_{1}-x_{2}^{3}+100 x_{1}^{6}=0$ has a solution

V is convinced and learns a solution
NP Language: $x \in L$ iff $\exists w V_{L}(x, w)=1$

Zero Knowledge Proofs [GMR89]

$$
\mathrm{P}_{(x)} \longrightarrow \mathbb{V}_{(x)}
$$

Goal: Prove that a statement x is true without revealing any information other than the validity

Paradoxical?

1. Bob holds the two papers out, Alice sees them

2. Bob secretly swap the papers with $1 / 2$ probability

3. Bob holds the papers out. Alice guesses if Bob has swapped.

Interactive Proofs (IP)

$$
\widetilde{\mathbf{P}}_{(x)} \equiv \widetilde{\mathrm{V}}_{(x)}
$$

Fundamental Changes:

1. Use interaction
2. Use randomness / allow for error probability

Benefits:

1. ZK (today)
2. Verify way more statements efficiently e.g., verify an exponential time computation in polynomial time.

Interactive Proofs (IP)

A language is a set of true statement $L \subseteq\{0,1\}^{*}$.
An IP consists of a prover algorithm P and a verifier alg V.
V is efficient - polynomial time in $|x|$ (P may be inefficient)

$$
\mathbf{P}_{(x, w)}^{\rightleftharpoons \ldots} \underset{(x) \rightarrow b \in\{0,1\}}{ }
$$

Interactive proof:

- Correctness: \forall true statement $x, \mathrm{P}(x)$ convinces $\mathrm{V}(x)$ always
- Soundness: \forall false statement x, \forall cheating prover P^{*} (may not follow the honest prover algorithm) $\mathrm{V}(x)$ rejects with high probability $1-\epsilon$ (e.g., $\epsilon=0.01$)

Zero Knowledge (ZK) Proofs [GMR89]

Informally: An IP protocol for L is ZK if

- Zero-knowledge: \forall true statement x, \forall efficient cheating verifier V^{*} (may not follow the honest verifier algorithm), $V^{*}(x)$ "learns nothing" about w from the interaction

$$
\mathbf{P}_{(x, w)}^{\rightleftharpoons} \stackrel{(0}{\rightleftarrows}{ }_{(x)}
$$

Interactive proof:

- Correctness: \forall true statement $x, \mathrm{P}(x)$ convinces $\mathrm{V}(x)$ always
- Soundness: \forall false statement x, \forall cheating prover P^{*} (may not follow the honest prover algorithm) $\mathrm{V}(x)$ rejects with high probability $1-\epsilon$ (e.g., $\epsilon=0.01$)

Graph 3-Coloring

Problem. Given a graph $G=(V, E)$, Can the vertices be colored using one of three colors, so that, no two nodes connected by an edge have the same color?

Graph 3-coloring is NP-complete!

- Statement X: A graph G has a 3-coloring
- Solution W: A valid 3-coloring

Q: For the same graph, are there many valid 3-colorings?
A: Yes, in particular, permuting the colors gives valid coloring

'P'
(1) Color the vertices in arbitrary ways

$$
\text { Edge } e=(7,8)
$$

(2)
\checkmark chooses an
edge at random
(3)
P^{*} removes hats on the two vertices connected by e (in front of V)

V rejects if they
have same color

P'

(1) Color the vertices in arbitrary ways

Let $C o l$ be the random variable describing the hidden coloring of G \forall coloring C of $G, \quad \operatorname{Pr}[V$ accepts $\mid \operatorname{Col}=C] \leq 1-1 / m$ By LTP, $\operatorname{Pr}[V$ accepts $\mid \leq 1-1 / m$

Reduce Soundness Error

Issue: The 3-move protocol has soundness error $\epsilon=1-\frac{1}{m^{\prime}}$ where m is the number of edges

Solution: Reduce the soundness error by repeating k times

'P'

Soundness

Repeat
k times

accept

accept

Let $C o l_{i}$ be the random variable describing i^{\prime} th hidden coloring of G $\forall i, \forall$ coloring $C_{1} \cdots C_{i}$ of G,
$\operatorname{Pr}\left[V\right.$ accept in i^{\prime} th run $\left.\mid \operatorname{Col}_{1}=C_{1}, \cdots, \operatorname{Col}_{i}=C_{i}\right] \leq 1-1 / m$
By chain rule, $\operatorname{Pr}\left[V\right.$ accepts in all runs $\left.\mid \operatorname{Col}_{1}=C_{1}, \cdots \operatorname{Col}_{k}=C_{k}\right] \leq\left(1-\frac{1}{m}\right)^{k}$
By LTP, $\operatorname{Pr}[V$ accepts in all runs $] \leq\left(1-\frac{1}{m}\right)^{k}$

Reduce Soundness Error

Issue: The 3-move protocol has soundness error $\epsilon=1-\frac{1}{m}$, where m is the number of edges

Solution: Reduce the soundness error by repeating $k=m \cdot \lambda$

- The verifier rejects, as soon as any of these k runs results in rejection
- Soundness error is now $\left(1-\frac{1}{m}\right)^{k} \leq e^{-\frac{1}{m} k}=e^{-\lambda}$

In each run V^{*} learns that the endpoints of one edge can be colored with two different colors.
This is implied by the fact that \mathbf{G} can be 3 -colored and hence V^{*} learns nothing.

Cryptographic hats

Cryptographic hats

