
CSE 312: Foundations of Computing II Winter 2024

Section 5 – Solutions
Review

1) Variance. Var pXq “ ErpX ´ ErXsq2s “ ErX2s ´ ErXs2 Var paX ` bq “ Var pXq.

Notice that since this is an expectation of a non-negative random variable (pX ´ µq
2), variance is always

non-negative.

Var paX ` bq “ a2Var pXq

2) Independence. Two random variables X and Y are independent if .

When two random variables are independent, we have ErXY s “ ErXsErY s (the converse is not necessarily
true).

@x P ΩX ,@y P ΩY , the following holds true: P pX “ x X Y “ yq “ P pX “ xqP pY “ yq

3) Variance and Independence. For any two independent random variables X and Y , Var pX ` Y q “

This depends on independence, whereas linearity of expectation always holds. Note that this combined with
the above shows that @a, b, c P R and if X is independent of Y , VarpaX ` bY ` cq “ a2VarpXq ` b2VarpY q.

Var pX ` Y q “ Var pXq ` V arpY q

4) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff they
are independent and have the same probability mass function.

5) Uniform: X „ Uniformpa, bq (Unifpa, bq for short), for integers a ď b, iff X has the following probability mass
function:

pX pkq “
1

b ´ a ` 1
, k “ a, a ` 1, . . . , b

ErXs “ a`b
2 and VarpXq “

pb´aqpb´a`2q

12 . This represents each integer from ra, bs being equally likely. For
example, a single roll of a fair die is Uniformp1, 6q.

6) Bernoulli (or indicator): X „ Bernoullippq (Berppq for short) iff X has the following probability mass
function:

pX pkq “

"

p, k “ 1
1 ´ p, k “ 0

ErXs “ p and VarpXq “ pp1 ´ pq. An example of a Bernoulli r.v. is one flip of a coin with P pheadq “ p.

7) Binomial: X „ Binomialpn, pq (Binpn, pq for short) iff X is the sum of n iid Bernoullippq random variables.
X has probability mass function

pX pkq “

ˆ

n

k

˙

pk p1 ´ pq
n´k

, k “ 0, 1, . . . , n

ErXs “ np and VarpXq “ npp1´pq. An example of a Binomial r.v. is the number of heads in n independent
flips of a coin with P pheadq “ p. Note that Binp1, pq ” Berppq. As n Ñ 8 and p Ñ 0,with np “ λ,
then Bin pn, pq Ñ Poipλq. If X1, . . . , Xn are independent Binomial r.v.’s, where Xi „ BinpNi, pq, then
X “ X1 ` . . . ` Xn „ BinpN1 ` . . . ` Nn, pq.

1



8) Geometric: X „ Geometricppq (Geoppq for short) iff X has the following probability mass function:

pX pkq “ p1 ´ pq
k´1

p, k “ 1, 2, . . .

ErXs “ 1
p and VarpXq “

1´p
p2 . An example of a Geometric r.v. is the number of independent coin flips up to

and including the first head, where P pheadq “ p.

We may or may not cover the next three in class.

9) Poisson: X „ Poissonpλq (Poipλq for short) iff X has the following probability mass function:

pX pkq “ e´λλ
k

k!
, k “ 0, 1, . . .

ErXs “ λ and VarpXq “ λ. An example of a Poisson r.v. is the number of people born during a particular
minute, where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson r.v.’s, where
Xi „ Poipλiq, then X “ X1 ` . . . ` Xn „ Poipλ1 ` . . . ` λnq.

10) Hypergeometric: X „ HyperGeometricpN,K, nq (HypGeopN,K, nq for short) iff X has the following prob-
ability mass function:

pX pkq “

`

K
k

˘`

N´K
n´k

˘

`

N
n

˘ , where n ď N, k ď minpK,nq and k ě maxp0, n ´ pN ´ Kqq.

We have ErXs “ nK
N . (VarpXq “ n ¨

KpN´KqpN´nq

N2p2N´1q
which is not very memorable.) This represents the

number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and
N ´K failures) without replacement. If we did this with replacement, then this scenario would be represented
as Bin

`

n, K
N

˘

.

11) Negative Binomial: X „ NegativeBinomialpr, pq (NegBinpr, pq for short) iffX is the sum of r iid Geometricppq

random variables. X has probability mass function

pX pkq “

ˆ

k ´ 1

r ´ 1

˙

pr p1 ´ pq
k´r

, k “ r, r ` 1, . . .

ErXs “ r
p and VarpXq “

rp1´pq

p2 . An example of a Negative Binomial r.v. is the number of independent coin

flips up to and including the rth head, where P pheadq “ p. If X1, . . . , Xn are independent Negative Binomial
r.v.’s, where Xi „ NegBinpri, pq, then X “ X1 ` . . . ` Xn „ NegBinpr1 ` . . . ` rn, pq.

Task 1 – Pond fishing

Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B ` R ` G “ N . For each
of the following scenarios, identify the most appropriate distribution (with parameter(s)):

a) how many of the next 10 fish I catch are blue, if I catch and release

Since this is the same as saying how many of my next 10 trials (fish) are a success (are blue), this
is a binomial distribution. Specifically, since we are doing catch and release, the probability of a
given fish being blue is B

N and each trial is independent. Thus:

Bin

ˆ

10,
B

N

˙

b) how many fish I had to catch until my first green fish, if I catch and release
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Once again, each catch is independent, so this is asking how many trials until we see a success,
hence it is a geometric distribution:

Geo

ˆ

G

N

˙

c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

This is asking for the number of occurrences of event given an average rate, which is the definition
of the Poisson distribution. Since we’re looking for events in the next 5 minutes, that is our time
unit, so we have to adjust the average rate to match (r per minute becomes 5r per 5 minutes).

Poip5rq

d) whether or not my next fish is blue

This is the same as the binomial case, but it’s only one trial, so it is necessarily Bernoulli.

Ber

ˆ

B

N

˙

e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

We have not covered the Hypergeometric RV in class, but its definition is the number of successes
in n draws (without replacement) from N items that contain K successes in total. In this case, we
have 10 draws (without replacement because we do not catch and release), and out of the N fish,
B are blue (a success).

HypGeopN,B, 10q

f) how many fish I have to catch until I catch three red fish, if I catch and release

Negative binomial is another RV we didn’t cover in class. It models the number of trials with
probability of success p, until you get r successes. In this case, as before, our trials are caught fish
(with replacement this time) and our success is if the fish are red, which happens with probability
R
N .

NegBin

ˆ

3,
R

N

˙

Task 2 – Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2
independently of every other match.

a) How many matches do you expect to fight until you win 10 times and what kind of random variable is this?

The number of matches you have to fight until you win 10 times can be modeled by
ř10

i“1 Xi where
Xi „ Geometricp0.2q is the number of matches you have to fight to go from i ´ 1 wins to i wins,
including the match that gets you your ith win, where every match has a 0.2 probability of success.
Recall ErXis “ 1

0.2 “ 5. Er
ř10

i“1 Xis “
ř10

i“1 ErXis “
ř10

i
1
0.2 “ 10 ¨ 5 “ 50.

b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs
to win at least 10 matches in a year. What is the probability that you will go to the Championship this year
and what kind of random variable is the number of matches you win out of the 12?
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You can go to the championship if you win more than or equal to 10 times this year. Let Y be the
number of matches you win out of the 12 matches. Note that Y „ Binomialp12, 0.2q. Since the
max number you can win is 12 (there are 12 matches), we are looking for P p10 ď Y ď 12q. Thus,
since Y is discrete, we are interested in

PpY “ 10q ` PpY “ 11q ` PpY “ 12q “

12
ÿ

i“10

ˆ

12

i

˙

0.2ip1 ´ 0.2q12´i

c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year
career?

The number of times you go to the championship can be modeled by Y „ Binomialp20, pq. So,
ErY s “ 20 ¨ p.

Task 3 – True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

a) For any random variable X, we have ErX2s ě ErXs2.

True. VarpXq is the expectation of a square so VarpXq ě 0. Then we have ErX2s ´ ErXs2 “

VarpXq ě 0 which is equivalent to what we need to prove.

b) Let X,Y be random variables. Then, X and Y are independent if and only if ErXY s “ ErXsErY s.

False. The forward implication is true, but the reverse is not. For example, if X „ Uniformp´1, 1q

(equally likely to be in t´1, 0, 1u), and Y “ X2, we have ErXs “ 0, so ErXsErY s “ 0. However,
since X “ X3 (why? X takes on only 3 values ´1, 0, 1 which are the 3 solutions of the equation
x3 ´ x “ 0), ErXY s “ ErXX2s “ ErX3s “ ErXs “ 0, we have that ErXsErY s “ 0 “ ErXY s.
However, X and Y are not independent; indeed, PpY “ 0|X “ 0q “ 1 ‰ 1

3 “ PpY “ 0q.

c) Let X „ Binomialpn, pq and Y „ Binomialpm, pq be independent. Then, X ` Y „ Binomialpn ` m, pq.

True. X is the sum of n independent Bernoulli trials, and Y is the sum of m. So X ` Y is the
sum of n ` m independent Bernoulli trials, so X ` Y „ Binomialpn ` m, pq.

d) Let X1, ..., Xn`1 be independent Bernoullippq random variables. Then, Er
řn

i“1 XiXi`1s “ np2.

True. Notice that XiXi`1 is also Bernoulli (only takes on 0 and 1), but is 1 iff both are 1, so
XiXi`1 „ Bernoullipp2q. The statement holds by linearity, since ErXiXi`1s “ p2.

e) Let X1, ..., Xn`1 be independent Bernoullippq random variables. Then, Y “
řn

i“1 XiXi`1 „ Binomialpn, p2q.

False. They are all Bernoulli p2 as determined in the previous part, but they are not independent.
Indeed, PpX1X2 “ 1|X2X3 “ 1q “ PpX1 “ 1q “ p ‰ p2 “ PpX1X2 “ 1q.

f) If X „ Bernoullippq, then nX „ Binomialpn, pq.

False. The range of X is t0, 1u, so the range of nX is t0, nu. nX cannot be Binpn, pq, otherwise
its range would be t0, 1, ..., nu.

g) If X „ Binomialpn, pq, then X
n „ Bernoullippq.

False. Again, the range of X is t0, 1, ..., nu, so the range of X
n is t0, 1

n ,
2
n , ..., 1u. Hence it cannot

be Berppq, otherwise its range would be t0, 1u.
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h) For any two independent random variables X,Y , we have VarpX ´ Y q “ VarpXq ´ VarpY q.

False. VarpX ´ Y q “ VarpX ` p´Y qq “ VarpXq ` p´1q2VarpY q “ VarpXq ` VarpY q.

Task 4 – Memorylessness

We say that a random variable X is memoryless if PpX ą k ` i | X ą kq “ PpX ą iq for all non-negative
integers k and i. The idea is that X does not remember its history. Let X „ Geoppq. Show that X is memoryless.

Let’s note that if X „ Geoppq, then PpX ą kq “ Ppno successes in the first k trialsq “ p1 ´ pqk.

PpX ą k ` i | X ą kq “
PpX ą k | X ą k ` iq PpX ą k ` iq

PpX ą kq
rBayes Theorems

“
PpX ą k ` iq

PpX ą kq
rPpX ą k | X ą k ` iq “ 1s

“
p1 ´ pqk`i

p1 ´ pqk
rPpX ą kq “ p1 ´ pqks

“ p1 ´ pqi

“ PpX ą iq

Task 5 – Fun with Poissons

Let X „ Poissonpλ1q and Y „ Poissonpλ2q, where X and Y are independent.

a) Show that X ` Y „ Poissonpλ1 ` λ2q. To show that a random variable is distributed according to a
particular distribution, we must show that they have the same PMF. Thus, we are trying to show that

P pX ` Y “ nq “ e´pλ1`λ2q pλ1`λ2q
n

n!

P pX ` Y “ nq “

n
ÿ

k“0

P pX “ k X Y “ n ´ kq

“

n
ÿ

k“0

P pX “ kqP pY “ n ´ kq rX and Y are independents

“

n
ÿ

k“0

e´λ1
λk
1

k!
e´λ2

λn´k
2

pn ´ kq!

“ e´pλ1`λ2q

n
ÿ

k“0

λk
1

k!

λn´k
2

pn ´ kq!

“ e´pλ1`λ2q

n
ÿ

k“0

1

k!pn ´ kq!
λk
1λ

n´k
2

“
e´pλ1`λ2q

n!

n
ÿ

k“0

n!

k!pn ´ kq!
λk
1λ

n´k
2

“
e´pλ1`λ2q

n!

n
ÿ

k“0

ˆ

n

k

˙

λk
1λ

n´k
2

“
e´pλ1`λ2q

n!
pλ1 ` λ2qn rBinomial Theorems
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b) Show that P pX “ k | X ` Y “ nq “ P pW “ kq where W „ Binpn, λ1

λ1`λ2
q

P pX “ k | X ` Y “ nq “
P pX “ k X X ` Y “ nq

P pX ` Y “ nq

“
P pX “ k X Y “ n ´ kq

P pX ` Y “ nq

“
P pX “ kqP pY “ n ´ kq

P pX ` Y “ nq
rX and Y are independents

“
e´λ1 λk

1

k! ¨ e´λ2
λn´k
2

pn´kq!

e´pλ1`λ2q pλ1`λ2qn

n!

“

λk
1

k! ¨
λn´k
2

pn´kq!

pλ1`λ2qn

n!

“
n!

k!pn ´ kq!
¨

λk
1λ

n´k
2

pλ1 ` λ2qn

“

ˆ

n

k

˙

λk
1 λn´k

2

pλ1 ` λ2qk pλ1 ` λ2qn´k

“

ˆ

n

k

˙ ˆ

λ1

λ1 ` λ2

˙k ˆ

λ2

λ1 ` λ2

˙n´k

“ P pW “ kq

Task 6 – Balls and Bins

Throw n balls into m bins, where m and n are positive integers. Let X be the number of bins with exactly one
ball. Compute VarpXq.

Let Xi be the indicator that bin i has exactly one ball, for each i “ 1, ...,m. Since X “
ř

i Xi, we
can use the computational formula for variance:

VarpXq “ ErX2s ´ ErXs2

“ E

«˜

m
ÿ

i“1

Xi

¸2ff

´

˜

E

«

m
ÿ

i“1

Xi

ff¸2

“ E

«

ÿ

i‰j

XiXj `

m
ÿ

i“1

X2
i

ff

´

˜

m
ÿ

i“1

ErXis

¸2

rExpand square of sums

“
ÿ

i‰j

ErXiXjs `

m
ÿ

i“1

ErXis ´

˜

m
ÿ

i“1

ErXis

¸2

,

where the last line followed from linearity of expectation and recognizing that X2
i “ Xi, since it can

only take on the values 0 or 1.
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One has

ErXis “ 1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q rDefinition of Expectations

“ PpXi “ 1q

“

ˆ

n

1

˙

¨

´ 1

m

¯1´m ´ 1

m

¯n´1

“
n

m

´m ´ 1

m

¯n´1

which is putting only one ball out of n balls into ith bin.
For j P 1, ..., n, j ‰ i,

ErXiXjs “

ˆ

n

1

˙ˆ

n ´ 1

1

˙

´ 1

m

¯1´ 1

m

¯1´m ´ 2

m

¯n´2

“
npn ´ 1q

m2

´m ´ 2

m

¯n´2

which is putting only one ball out of n balls into ith bin and only one ball out of n ´ 1 balls into jth
bin.
Noting that

ř

i‰j has mpm ´ 1q terms, and the rest of the sums have m terms, we find

VarpXq “ mpm ´ 1q ¨
npn ´ 1q

m2

´m ´ 2

m

¯n´2

` m ¨
n

m

´m ´ 1

m

¯n´1

´ m2
” n

m

´m ´ 1

m

¯n´1ı2
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