
CSE 312: Foundations of Computing II Winter 2024

Section 7 – Solutions
Review

1) Discrete to Continuous:

Discrete Continuous
PMF/PDF pXpxq “ P pX “ xq fXpxq ‰ P pX “ xq “ 0

CDF FX pxq “
ř

tďx pXptq FX pxq “
şx

´8
fX ptq dt

Normalization
ř

x pXpxq “ 1
ş8

´8
fX pxq dx “ 1

Expectation ErXs “
ř

x xpXpxq ErXs “
ş8

´8
xfX pxq dx

LOTUS ErgpXqs “
ř

x gpxqpXpxq ErgpXqs “
ş8

´8
gpxqfX pxq dx

2) Continuous Law of Total Probability:

Suppose that E is an event, and X is a continuous random variable with density function fXpxq. Then

PpEq “

ż 8

´8

PpE | X “ xqfXpxqdx

3) Uniform: X „ Uniformpa, bq iff X has the following probability density function:

fX pxq “

"

1
b´a if x P ra, bs

0 otherwise

ErXs “ a`b
2 and VarpXq “

pb´aq
2

12 . This represents each real number from ra, bs to be equally likely.

4) Exponential: X „ Exponentialpλq iff X has the following probability density function:

fX pxq “

"

λe´λx if x ě 0
0 otherwise

ErXs “ 1
λ and VarpXq “ 1

λ2 . FX pxq “ 1 ´ e´λx for x ě 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event, where
λ ą 0 is the average number of events per unit time. Note that the exponential measures how much time
passes until the next event (any real number, continuous), whereas the Poisson measures how many events
occur in a unit of time (nonnegative integer, discrete). The exponential random variable X is memoryless:

for any s, t ě 0, P pX ą s ` t | X ą sq “ P pX ą tq

The geometric random variable also has this property.

5) Normal (Gaussian, “bell curve”): X „ N pµ, σ2q iff X has the following probability density function:

fX pxq “
1

σ
?
2π

e´ 1
2

px´µq2

σ2 , x P R

ErXs “ µ and VarpXq “ σ2. The “standard normal” random variable is typically denoted Z and has mean
0 and variance 1: if X „ N pµ, σ2q, then Z “

X´µ
σ „ N p0, 1q. The CDF has no closed form, but we denote

the CDF of the standard normal as Φ pzq “ FZ pzq “ P pZ ď zq. Note from symmetry of the probability
density function about z “ 0 that: Φ p´zq “ 1 ´ Φpzq.

Here is the Standard normal table.
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6) Standardizing: LetX be any random variable (discrete or continuous, not necessarily normal), with ErXs “ µ
and V arpXq “ σ2. If we let Y “

X´µ
σ , then ErY s “ 0 and V arpY q “ 1.

7) Closure of the Normal Distribution: Let X „ N pµ, σ2q. Then, aX ` b „ N paµ` b, a2σ2). That is, linear
transformations of normal random variables are still normal.

8) ‘Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with
ErXis “ µi and V arpXiq “ σ2

i . Let a1, . . . , anP R and bP R. Then,

X “

n
ÿ

i“1

paiXi ` bq „ N

˜

n
ÿ

i“1

paiµi ` bq,
n

ÿ

i“1

a2iσ
2
i

¸

There’s nothing special about the parameters – the important result here is that the resulting random variable
is still normally distributed.

9) Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with ErXis “ µ and V arpXiq “ σ2.
Let X “

řn
i“1 Xi, which has ErXs “ nµ and V arpXq “ nσ2. Let X “ 1

n

řn
i“1 Xi, which has ErXs “ µ

and V arpXq “ σ2

n . X is called the sample mean. Then, as n Ñ 8, X approaches the normal distribution

N
´

µ, σ2

n

¯

. Standardizing, this is equivalent to Y “
X´µ
σ{

?
n

approaching N p0, 1q. Similarly, as n Ñ 8, X

approaches N pnµ, nσ2q and Y 1 “
X´nµ
σ

?
n

approaches N p0, 1q.

It is no surprise that X has mean µ and variance σ2{n – this can be done with simple calculations. The
importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is approximately
normally distributed with mean µ and variance σ2{n.

10) Continuity Correction: This is a technique for getting a better estimate when applying CLT to the sum
X “

řn
i“1 Xi or the average of a set of random variables X1, . . . , Xn that are discrete. Specifically, if asked

to compute P pa ď X ď bq where a ď b are integers, you should compute P pa ´ 0.5 ď X ď b ` 0.5q so that
the width of the interval being integrated is the same as the number of terms you are summing over pb´a`1q.
Note that if you applying the CLT to sums/averages of continuous RVs instead, you should not apply the
continuity correction.

Task 1 – The exponential distribution is memoryless (problem from lecture)

Show that the exponential distribution is memoryless. Specifically, suppose that X is exponential with parameter
λ. Show that P pX ą t ` s|X ą sq “ P pX ą tq.

P pX ą t ` s|X ą sq “
P pX ą t ` s X X ą sq

P pX ą sq

“
P pX ą t ` sq

P pX ą sq

“
e´λpt`sq

e´λs

“ e´λt

“ 1 ´ FXptq.

Task 2 – More practice with exponentials (problem from lecture)
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The time it takes to check someone out at a grocery store is exponential with an expected value of 10 minutes.
Suppose that when you arrive at a grocery store, there is one person in the middle of being served. What is the
probability that you will have to wait between 10 and 20 minutes before that person is done being served?

Since the expected value of an exponential random variable is 1{λ, we have 1{λ “ 10 minutes, so
λ “ 1{10. In addition, since the exponential distribution is memoryless (that is, it doens’t matter
how long the person being served has already been there), the time that you will have to wait is
exponential with parameter 1{10. Thus

P p10 ď T ď 20q “

ż 20

10

1

10
e´x{10dx “ e´1 ´ e´2

Task 3 – Batteries and exponential distributions (from Section 6)

Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ď i ď 2. Let
Y “ minpX1, X2q.

a) Show that Y is an exponential random variable with parameter λ “ λ1 ` λ2. Hint: Start by computing
PpY ą yq. Two random variables with the same CDF have the same pdf. Why?

We start with computing PpY ą yq, by substituting in the definition of Y .

PpY ą yq “ PpmintX1, X2u ą yq

The probability that the minimum of two values is above a value is the chance that both of them are
above that value. From there, we can separate them further because X1 and X2 are independent.

PpX1 ą y X X2 ą yq “ PpX1 ą yqPpX2 ą yq “ e´λ1ye´λ2y

“ e´pλ1`λ2qy “ e´λy

So FY pyq “ 1 ´ PpY ą yq “ 1 ´ e´λy and fY pyq “ λe´λy so Y „ Exppλq, since this is the same
CDF and PDF as an exponential distribution with parameter λ “ λ1 ` λ2.

b) What is P pX1 ă X2q? (Use the continuous version of the law of total probability, conditioning on the
probability that X1 “ x.)

By the law of total probability,

PpX1 ă X2q “

ż 8

0

PpX1 ă X2 | X1 “ xqfX1
pxqdx “

ż 8

0

PpX2 ą xqλ1e
´λ1x dx “

ż 8

0

e´λ2xλ1e
´λ1x dx “

λ1

λ1 ` λ2

c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled 1, 2, . . . , n,
each of which has a lifetime that is exponentially distributed with parameter λ, independently of all other
batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with the lowest-
numbered unused battery. At the end of this process, you will be left with just one working battery. What is
the expected total time until the end of the process? Justify your answer.

Let T be the time until the end of the process. We are trying to find ErT s. T “ Y1 ` ... ` Yn´1

where Yi is the time until we have to replace a battery from the ith pair. The reason it there
are only n ´ 1 RVs in the sum is because there are n ´ 1 times where we have two batteries
and wait for one to fail. By part (a), the time for one to fail is the min of exponentials, so
Yi „ Exponentialp2λq. Hence the expected time for the first battery to fail is 1

2λ . By linearity and

memorylessness, ErT s “
řn´1

i“1 ErY1s “ n´1
2λ .
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d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as a
function of i? (You might want to use the memoryless property of the exponential distribution that has been
discussed.)

If there are two batteries i, j in the flashlight, by part (b), the probability each outlasts each other
is 1{2. Hence, the last battery n has probability 1{2 of being the last one remaining. The second
to last battery n ´ 1 has to beat out the previous battery and the nth, so the probability it lasts
the longest is p1{2q2 “ 1{4. Work down inductively to get that the probability the ith is the last
remaining is p1{2qn´i`1 for i ě 3. Finally the first two batteries share the remaining probability as
they start at the same time, with probability p1{2qn´1 each.

Task 4 – Normal questions at the table (from Section 6)

a) Let X be a normal random with parameters µ “ 10 and σ2 “ 36. Compute Pp4 ă X ă 16q.

Let X´10
6 “ Z. By the scale and shift properties of normal random variables Z „ N p0, 1q.

Pp4 ă X ă 16q “ P
ˆ

4 ´ 10

6
ă

X ´ 10

6
ă

16 ´ 10

6

˙

“ Pp´1 ă Z ă 1q

“ Φp1q ´ Φp´1q “ 2Φp1q ´ 1 “ 0.68268

b) Let X be a normal random variable with mean 5. If PpX ą 9q “ 0.2, approximately what is VarpXq?

Let σ2 “ VarpXq. Then,

PpX ą 9q “ P
ˆ

X ´ 5

σ
ą

9 ´ 5

σ

˙

“ 1 ´ Φ

ˆ

4

σ

˙

“ 0.2

So, Φ
`

4
σ

˘

“ 0.8. Looking up the phi values in reverse lets us undo the Φ function, and gives us
4
σ “ 0.845. Solving for σ we get σ « 4.73, which means that the variance is about 22.4.

c) Let X be a normal random variable with mean 12 and variance 4.
Find the value of c such that PpX ą cq “ 0.10.

PpX ą cq “ P
ˆ

X ´ 12

2
ą

c ´ 12

2

˙

“ 1 ´ Φ

ˆ

c ´ 12

2

˙

“ 0.1

So, Φ
`

c´12
2

˘

“ 0.9. Looking up the phi values in reverse lets us undo the Φ function, and gives us
c´12
2 “ 1.29. Solving for c we get c « 14.58.

Task 5 – Round-off error

Let X be the sum of 100 real numbers, and let Y be the same sum, but with each number rounded to the nearest
integer before summing. If the roundoff errors are independent and uniformly distributed between -0.5 and 0.5,
what is the approximate probability that |X ´ Y | ą 3?

Let X “
ř100

i“1 Xi, and Y “
ř100

i“1 rpXiq, where rpXiq is Xi rounded to the nearest integer. Then,
we have

X ´ Y “

100
ÿ

i“1

Xi ´ rpXiq
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Note that each Xi ´ rpXiq is simply the round off error, which is distributed as Unifp´0.5, 0.5q.
Since X ´ Y is the sum of 100 i.i.d. random variables with mean µ “ 0 and variance σ2 “ 1

12 ,
X ´Y « W „ N p0, 100

12 q by the Central Limit Theorem. For notational convenience let Z „ N p0, 1q

Pp|X ´ Y | ą 3q « Pp|W | ą 3q rCLTs

“ PpW ą 3q ` PpW ă ´3q rNo overlap between W ą 3 and W ă ´3s

“ 2 PpW ą 3q rSymmetry of normals

“ 2 P

˜

W
a

100{12
ą

3
a

100{12

¸

« 2 PpZ ą 1.039q rStandardize W s

“ 2 p1 ´ Φp1.039qq « 0.29834

Task 6 – Tweets

A prolific Twitter user tweets approximately 350 tweets per week. Let’s assume for simplicity that the tweets are
independent, and each consists of a uniformly random number of characters between 10 and 140. (Note that this
is a discrete uniform distribution.) Thus, the central limit theorem (CLT) implies that the number of characters
tweeted by this user is approximately normal with an appropriate mean and variance. Assuming this normal
approximation is correct, estimate the probability that this user tweets between 26,000 and 27,000 characters in
a particular week. (This is a case where continuity correction will make virtually no difference in the answer, but
you should still use it to get into the practice!).

Let X be the total number of characters tweeted by a twitter user in a week. Let Xi „ Unifp10, 140q

be the number of characters in the ith tweet (since the start of the week). Since X is the sum of 350
i.i.d. rvs with mean µ “ 75 and variance σ2 “ 1430, X « N „ N p350 ¨ 75, 350 ¨ 1430q. Thus,

Pp26, 000 ď X ď 27, 000q « Pp26, 000 ď N ď 27, 000q

Now, we apply continuity correction:

Pp26, 000 ď N ď 27, 000q « Pp25, 999.5 ď N ď 27, 000.5q

Standardizing this gives the following formula

Pp25, 999.5 ď N ď 27, 000.5q « P
ˆ

´0.3541 ď
N ´ 350 ¨ 75
?
350 ¨ 1430

ď 1.0608

˙

“ P p´0.3541 ď Z ď 1.0608q

“ PpZ ď 1.0608q ´ PpZ ď ´0.3541q

“ Φp1.0608q ´ Φp´0.3541q

« 0.4923

So the probability that this user tweets between 26,000 and 27,000 characters in a particular week is
approximately 0.4923.

Task 7 – Confidence interval

Suppose that X1, . . . , Xn are i.i.d. samples from a normal distribution with unknown mean µ and variance 36.
How big does n need to be so that µ is in

rX ´ 0.11, X ` 0.11s
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with probability at least 0.97?

Recall that

X “
1

n

n
ÿ

i“1

Xi.

You may use the fact that Φ´1p0.985q “ 2.17.

Our goal is to find n such that µ lies within 0.11 of X̄ 97% of the time. This is equivalent to finding
n such that the probability that µ lies outside the range is less than 3%.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Let us define Z “
X̄´µ
σ . We can solve for σ by using the Properties of Variance. Since

X̄ “
1

n

n
ÿ

i“1

Xi

we can say that

VarpX̄q “ Varp
1

n

n
ÿ

i“1

Xiq

Using the Properties of Variance and the fact that Xi’s are i.i.d., VarpX̄q “ 1
n2 ¨ n ¨ 36 “ 36

n , so
σ “ 6?

n
.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Pp|Z| ¨ σ ą 0.11q ď 0.03 rDefinition of Zs

P
ˆ

|Z| ą
0.11

6

?
n

˙

ď 0.03

P
ˆ

Z ă ´
0.11

6

?
n

˙

ď 0.015 rSymmetry of Normal Dist.s

Φ

ˆ

´
0.11

6

?
n

˙

ď 0.015 rCDF of Standard Norm.s

´
0.11

6

?
n ď ´Φ´1p0.985q

?
n ě

6 ¨ Φ´1p0.985q

0.11

n ě

ˆ

6 ¨ Φ´1p0.985q

0.11

˙2

« 14009.95

Then n must be at least 14010.

Task 8 – Normal Approximation of a Sum

Imagine that we are trying to transmit a signal. During the transmission, there are 100 sources independently
making low noise. Each source produces an amount of noise that is uniformly distributed between a “ ´1 and
b “ 1. If the total amount of noise is greater than 10 or less than ´10, then it corrupts the signal. However, if
the absolute value of the total amount of noise is under 10, then it is not a problem. What is the approximate
probability that the absolute value of the total amount of noise from the 100 signals is less than 10?
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Let S be the total amount of noise. We want to find P p|S| ă 10q “ P p´10 ă S ă 10q. Let Xi be
the noise from source i. Then, we have

S “

100
ÿ

i“1

Xi.

Since the Xi are uniformly distributed, we have that ErXis “ a`b
2 “ 0 and Var pXiq “

pb´aq
2

12 “ 1
3 .

Since the Xi are i.i.d, by the Central Limit Theorem, we find that S is approximately distributed
according to N

`

0, 100 ¨ 1
3

˘

. Now, we standardize to get

Pp´10 ă S ă 10q “ P

˜

´10 ´ 0
a

100{3
ă

S ´ 0
a

100{3
ă

10 ´ 0
a

100{3

¸

“ 2Φp
?
3q ´ 1 « 0.91
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