
CSE 312: Foundations of Computing II Winter 2023

Section 8 – Solutions

Review

1) Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y px, yq “ P pX “ x, Y “ yq fX,Y px, yq ‰ P pX “ x, Y “ yq

Joint range/support
ΩX,Y tpx, yq P ΩX ˆ ΩY : pX,Y px, yq ą 0u tpx, yq P ΩX ˆ ΩY : fX,Y px, yq ą 0u

Joint CDF FX,Y px, yq “
ř

tďx,sďy pX,Y pt, sq FX,Y px, yq “
şx

´8

şy

´8
fX,Y pt, sq dsdt

Normalization
ř

x,y pX,Y px, yq “ 1
ş8

´8

ş8

´8
fX,Y px, yq dxdy “ 1

Marginal PMF/PDF pXpxq “
ř

y pX,Y px, yq fXpxq “
ş8

´8
fX,Y px, yqdy

Expectation ErgpX,Y qs “
ř

x,y gpx, yqpX,Y px, yq ErgpX,Y qs “
ş8

´8

ş8

´8
gpx, yqfX,Y px, yqdxdy

Independence @x, y, pX,Y px, yq “ pXpxqpY pyq @x, y, fX,Y px, yq “ fXpxqfY pyq

must have ΩX,Y “ ΩX ˆ ΩY ΩX,Y “ ΩX ˆ ΩY

Conditional PMF/PDF pX|Y px|yq “
pX,Y px,yq

pY pyq
fX|Y px|yq “

fX,Y px,yq

fY pyq

Conditional Expectation ErX|Y “ ys “
ř

x x ¨ pX|Y px|yq ErX|Y “ ys “
ş8

´8
xfX|Y px|yqdx

2) Normal (Gaussian, “bell curve”): X „ N pµ, σ2q iff X has the following probability density function:

fX pxq “
1

σ
?
2π

e´ 1
2

px´µq2

σ2 , x P R

ErXs “ µ and VarpXq “ σ2. The “standard normal” random variable is typically denoted Z and has mean
0 and variance 1: if X „ N pµ, σ2q, then Z “

X´µ
σ „ N p0, 1q. The CDF has no closed form, but we denote

the CDF of the standard normal as Φ pzq “ FZ pzq “ P pZ ď zq. Note from symmetry of the probability
density function about z “ 0 that: Φ p´zq “ 1 ´ Φpzq.

3) Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with ErXis “ µ and V arpXiq “ σ2.
Let X “

řn
i“1 Xi, which has ErXs “ nµ and V arpXq “ nσ2. Let X “ 1

n

řn
i“1 Xi, which has ErXs “ µ

and V arpXq “ σ2

n . X is called the sample mean. Then, as n Ñ 8, X approaches the normal distribution

N
´

µ, σ2

n

¯

. Standardizing, this is equivalent to Y “
X´µ
σ{

?
n

approaching N p0, 1q. Similarly, as n Ñ 8, X

approaches N pnµ, nσ2q and Y 1 “
X´nµ
σ

?
n

approaches N p0, 1q.

It is no surprise that X has mean µ and variance σ2{n – this can be done with simple calculations. The
importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is approximately
normally distributed with mean µ and variance σ2{n. Don’t forget the continuity correction, only when
X1, . . . , Xn are discrete random variables.

Here is the Standard normal table.

4) Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with density
function fXpxq.

PpAq “

ż 8

´8

PpA | X “ xqfXpxqdx
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Task 1 – Joint PMF’s

Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 0 0.2 0.1
1 0.3 0 0.4

a) Identify the range of X (ΩX), the range of Y (ΩY ), and their joint range (ΩX,Y ).

ΩX “ t0, 1u, ΩY “ t1, 2, 3u, and ΩX,Y “ tp0, 2q, p0, 3q, p1, 1q, p1, 3qu

b) Find the marginal PMF for X, pXpxq for x P ΩX .

Note that ΩX “ t0, 1u.

pXp0q “
ÿ

y

pX,Y p0, yq “ 0 ` 0.2 ` 0.1 “ 0.3

pXp1q “ 1 ´ pXp0q “ 0.7

c) Find the marginal PMF for Y , pY pyq for y P ΩY .

Note that ΩY “ t1, 2, 3u.

pY p1q “
ÿ

x

pX,Y px, 1q “ 0 ` 0.3 “ 0.3

pY p2q “
ÿ

x

pX,Y px, 2q “ 0.2 ` 0 “ 0.2

pY p3q “
ÿ

x

pX,Y px, 3q “ 0.1 ` 0.4 “ 0.5

d) Are X and Y independent? Why or why not?

X and Y are not independent. Recall that a necessary condition for X and Y to be independent
is that ΩX,Y “ ΩX ˆ ΩY . The joint range ΩX,Y does not satisfy this criteria, so it cannot be
independent.

e) Find ErX3Y s.

Note that X3 “ X since X takes values in t0, 1u.

ErX3Y s “ ErXY s “
ÿ

px,yqPΩX,Y

xypX,Y px, yq “ 1 ¨ 1 ¨ 0.3 ` 1 ¨ 3 ¨ 0.4 “ 1.5

Task 2 – Do You “Urn” to Learn More About Probability?

Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let
Xi “ 1 if the i-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass function
of

a) X1, X2
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Here is one way of defining the joint pmf of X1, X2

pX1,X2
p1, 1q “ P pX1 “ 1qP pX2 “ 1 | X1 “ 1q “

5

13
¨
4

12
“

20

156

pX1,X2
p1, 0q “ P pX1 “ 1qP pX2 “ 0 | X1 “ 1q “

5

13
¨
8

12
“

40

156

pX1,X2p0, 1q “ P pX1 “ 0qP pX2 “ 1 | X1 “ 0q “
8

13
¨
5

12
“

40

156

pX1,X2p0, 0q “ P pX1 “ 0qP pX2 “ 0 | X1 “ 0q “
8

13
¨
7

12
“

56

156

b) X1, X2, X3

Instead of listing out all the individual probabilities, we could write a more compact formula for
the pmf. In this problem, the denominator is always P p13, kq, where k is the number of random
variables in the joint pmf. And the numerator is P p5, iq times P p8, jq where i and j are the number
of 1s and 0s, respectively.

If we wish to compute pX1,X2,X3
px1, x2, x3q, then the number of 1s (i.e., white balls) is x1`x2`x3,

and the number of 0s (i.e., red balls) is p1 ´ x1q ` p1 ´ x2q ` p1 ´ x3q. Then, we can write the
pmf as follows:

pX1,X2,X3
px1, x2, x3q “

10!

13!
¨

5!

p5 ´ x1 ´ x2 ´ x3q!
¨

8!

p5 ` x1 ` x2 ` x3q!

Task 3 – Trinomial Distribution

A generalization of the Binomial model is when there is a sequence of n independent trials, but with three
outcomes, where Ppoutcome iq “ pi for i “ 1, 2, 3 and of course p1 ` p2 ` p3 “ 1. Let Xi be the number of
times outcome i occurred for i “ 1, 2, 3, where X1 ` X2 ` X3 “ n. Find the joint PMF pX1,X2,X3px1, x2, x3q

and specify its value for all x1, x2, x3 P R.

Are X1 and X2 independent?

In a similar argument with the binomial PMF, we have

pX1,X2,X3px1, x2, x3q “

ˆ

n

x1

˙ˆ

n ´ x1

x2

˙ˆ

n ´ x1 ´ x2

x3

˙

px1
1 px2

2 px3
3 .

This may also be interpreted as multinomial coefficients (reference), and so we may rewrite as

pX1,X2,X3px1, x2, x3q “

ˆ

n

x1, x2, x3

˙

px1
1 px2

2 px3
3 “

n!

x1!x2!x3!
px1
1 px2

2 px3
3 ,

where x1 ` x2 ` x3 “ n and are nonnegative integers.

X1 and X2 are not independent. For example PpX1 “ nq ą 0 and PpX2 “ nq ą 0, but PpX1 “

n,X2 “ nq “ 0. In other words, ΩX1,X2,X3
‰ ΩX1

ˆ ΩX2
ˆ ΩX3

, which is a necessary condition for
independence.

Task 4 – Successes
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Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X1 be the
number of failures preceding the first success, and let X2 be the number of failures after the first success but
preceding the second success. Find the joint pmf of X1 and X2. Write an expression for Er

?
X1X2s. You can

leave your answer in the form of a sum.

In order for X1 to take on a particular value, say x1, it must have x1 failures until the first success,
i.e., the next trial is a success. To that end, for X1 and X2 to take on two particular values x1 and
x2, there must be x1 failures followed by one success, and then x2 failures followed by one success.
Since the Bernoulli trials are independent, the joint pmf is

pX1,X2px1, x2q “ p1 ´ pqx1p ¨ p1 ´ pqx2p “ p1 ´ pqx1`x2p2

for px1, x2q P ΩX1,X2
“ t0, 1, 2, . . .u ˆ t0, 1, 2, . . .u. By the definition of expectation and LOTUS,

Er
a

X1X2s “
ÿ

px1,x2qPΩX1,X2

?
x1x2 ¨ pX1,X2

px1, x2q “
ÿ

px1,x2qPΩX1,X2

?
x1x2 ¨ p1 ´ pqx1`x2p2 .

Task 5 – Who fails first?

Here’s a question that commonly comes up in industry, but isn’t immediately obvious. You have a disk with
probability p1 of failing each day. You have a CPU which independently has probability p2 of failing each day.
What is the probability that your disk fails before your CPU?

a) Compute the probability by summing over the relevant part of the probability space.

We model the problem by considering two Geometric random variables and deriving the probability
that one is smaller than the other. Let X1 „ Geometricpp1q. Let X2 „ Geometricpp2q. Assume
X1 and X2 are independent. We want P pX1 ă X2q.

P pX1 ă X2q “

8
ÿ

k“1

8
ÿ

k2“k`1

pX1,X2
pk, k2q

“

8
ÿ

k“1

8
ÿ

k2“k`1

pX1
pkq ¨ pX2

pk2q (by independence)

“

8
ÿ

k“1

8
ÿ

k2“k`1

p1 ´ p1qk´1p1 ¨ p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1

8
ÿ

k2“k`1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk
8
ÿ

k2“1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk ¨ 1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

b) Try to provide an intuitive reason for the answer.
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Think about X1 and X2 in terms of coin flips. Notice that all the flips are irrelevant until the final
flip, since before the final flip, both the X1 coin and the X2 coin only yield tails. P pX1 ă X2q is
the probability that on the final flip, where by definition at least one coin comes up heads, it is the
case that the X1 coin is heads and the X2 coin is tails. So we’re looking for the probability that the
X1 coin produces a heads and the X2 coin produces a tails, conditioned on the fact that they’re
not both tails, which is derived as:

P pCoin 1 “ H and Coin 2 “ T | not both T q “
P pCoin 1 “ H and Coin 2 “ T q

P pnot both T q

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Another way to approach this problem is to use conditioning. Recall that in computing the prob-
ability of an event, we saw in Chapter 2 that it is often useful to condition on other events. We
can use this same idea in computing probabilities involving random variables, because X “ k and
Y “ y are just events.

c) Recompute the probability using the law of total probability, conditioning on the value of X1.

Again, let X1 „ Geometricpp1q and X2 „ Geometricpp2q, where X1 and X2 are independent. Then

P pX1 ă X2q “

8
ÿ

k“1

P pX1 ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pk ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pX2 ą kq ¨ P pX1 “ kq (by independence)

“

8
ÿ

k“1

p1 ´ p2qk ¨ p1 ´ p1qk´1 ¨ p1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Task 6 – Continuous joint density

The joint density of X and Y is given by

fX,Y px, yq “

#

xe´px`yq x ą 0, y ą 0

0 otherwise.

and the joint density of W and V is given by

fW,V pw, vq “

#

2 0 ă w ă v, 0 ă v ă 1

0 otherwise.

Are X and Y independent? Are W and V independent?
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For two random variables X,Y to be independent, we must have fX,Y px, yq “ fXpxqfY pyq for all
x P ΩX , y P ΩY . Let’s start with X and Y by finding their marginal PDFs. By definition, and using
the fact that the joint PDF is 0 outside of y ą 0, we get:

fXpxq “

ż 8

0

xe´px`yqdy “ e´xx

We do the same to get the PDF of Y , again over the range x ą 0:

fY pyq “

ż 8

0

xe´px`yqdx “ e´y

Since e´xx ¨ e´y “ xe´x´y “ xe´px`yq for all x, y ą 0, X and Y are independent.

We can see thatW and V are not independent simply by observing that ΩW “ p0, 1q and ΩV “ p0, 1q,
but ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V pw, vq.
Graphing it with w as the ”x-axis” and v as the ”y-axis”, we see that :

The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not
rectangular, and therefore it is not the case that ΩW,V “ ΩW

Ś

ΩV . Remember, the joint range
being the Cartesian product of the marginal ranges is not sufficient for independence, but it is neces-
sary. Therefore, this is enough to show that they are not independent.

Task 7 – Grades and homework turn-in time

Suppose we’re currently trying to find a relationship between the time a student turns in their homework and the
grade that they receive on the respective homework. Let T denote the amount of time prior to the deadline that
the homework is submitted. We have observed that no student submits the homework more than 2 days earlier
than the deadline, and also no student submits their assignment late, so 0 ď T ď 2. Now let G be a random
variable, indicating the percentage that the student receives on the homework assignment, that is, 0 ď G ď 1.
Suppose G and T are continuous random variables, and their joint pdf is given by

fG,T pg, tq “

#

9
10g

2t ` 1
5 when 0 ď g ď 1 and 0 ď t ď 2

0 otherwise .

For both parts, round your solution to three decimal places.

a) What is the probability that a randomly selected student gets a grade above 50% on the homework?
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We are looking for PpG ą 0.5q. To do this, we must first compute the marginal density function
fGpgq. Applying by definition,

fGpgq “

ż 8

´8

fG,T pg, tq dt

“

ż 2

0

fG,T pg, tq dt “

ż 2

0

9

10
g2t `

1

5
dt “

ˆ

9

10

1

2
t2g2 `

1

5
t

˙
ˇ

ˇ

ˇ

ˇ

2

0

“
9

5
g2 `

2

5
.

Then

PpG ą 0.5q “

ż 8

0.5

fGpgq dg “

ż 1

0.5

9

5
g2 `

2

5
dg “

29

40
“ 0.725 .

b) What is the probability that a student gets a grade above 50%, given that the student submitted less than a
day before the deadline?

We are looking for

PpG ą 0.5 | T ă 1q “
PpG ą 0.5 X T ă 1q

PpT ă 1q
,

which follows by the definition of conditional probability. The numerator can be computed using
the joint pdf. However, the denominator needs us to calculate the marginal pdf. We can follow a
similar approach to the previous part and get

fT ptq “

ż 1

0

fG,T pg, tq dg “

ż 1

0

9

10
g2t `

1

5
dg “

3

10
t `

1

5
.

Thus,

PpG ą 0.5 | T ă 1q “

ş1

0.5

ş1

0
fG,T pg, tq dt dg

ş1

0
fT ptq dt

“

ş1

0.5

ş1

0
9
10g

2t ` 1
5 dt dg

ş1

0
3
10 t ` 1

5 dt
« 0.661 .

Task 8 – Confidence Intervals

Suppose that X1, . . . , Xn are i.i.d. samples from a normal distribution with unknown mean µ and variance 36.
How big does n need to be so that ErXs “ µ is in

rX ´ 0.11, X ` 0.11s

with probability at least 0.97? Recall that

X “
1

n

n
ÿ

i“1

Xi.

You may use the fact that Φ´1p0.985q “ 2.17.

Our goal is to find n such that µ lies within 0.11 of X̄ 97% of the time. This is equivalent to finding
n such that the probability that µ lies outside the range is less than 3%.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Let us define Z “
X̄´µ
σ . We can solve for σ by using the Properties of Variance. Since

X̄ “
1

n

n
ÿ

i“1

Xi
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we can say that

VarpX̄q “ Varp
1

n

n
ÿ

i“1

Xiq

Using the Properties of Variance and the fact that Xi’s are i.i.d., VarpX̄q “ 1
n2 ¨ n ¨ 36 “ 36

n , so
σ “ 6?

n
.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Pp|Z| ¨ σ ą 0.11q ď 0.03 rDefinition of Zs

P
ˆ

|Z| ą
0.11

6

?
n

˙

ď 0.03

P
ˆ

Z ă ´
0.11

6

?
n

˙

ď 0.015 rSymmetry of Normal Dist.s

Φ

ˆ

´
0.11

6

?
n

˙

ď 0.015 rCDF of Standard Norm.s

´
0.11

6

?
n ď ´Φ´1p0.985q

?
n ě

6 ¨ Φ´1p0.985q

0.11

n ě

ˆ

6 ¨ Φ´1p0.985q

0.11

˙2

« 14009.95

Then n must be at least 14010.
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