Section 8

Review

	Discrete	Continuous	
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}\left(X = x, Y = y\right)$	$f_{X,Y}(x,y) \neq \mathbb{P}\left(X = x, Y = y\right)$	
Joint range/support			
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$	
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \leq x, s \leq y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$	
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$	
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$	
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$	
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$	
must have	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$	
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$	
Conditional Expectation	$\mathbb{E}[X Y=y] = \sum_{x} x \cdot p_{X Y}(x y)$	$\mathbb{E}[X Y=y] = \int_{-\infty}^{\infty} x f_{X Y}(x y) dx$	

1) Multivariate: Discrete to Continuous:

2) Normal (Gaussian, "bell curve"): $X \sim \mathcal{N}(\mu, \sigma^2)$ iff X has the following probability density function:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}, \quad x \in \mathbb{R}$$

 $\mathbb{E}[X] = \mu$ and $\operatorname{Var}(X) = \sigma^2$. The "standard normal" random variable is typically denoted Z and has mean 0 and variance 1: if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$. The CDF has no closed form, but we denote the CDF of the standard normal as $\Phi(z) = F_Z(z) = \mathbb{P}(Z \leq z)$. Note from symmetry of the probability density function about z = 0 that: $\Phi(-z) = 1 - \Phi(z)$.

3) Central Limit Theorem (CLT): Let X_1, \ldots, X_n be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) = \sigma^2$. Let $X = \sum_{i=1}^n X_i$, which has $\mathbb{E}[X] = n\mu$ and $Var(X) = n\sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, which has $\mathbb{E}[\overline{X}] = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$. \overline{X} is called the *sample mean*. Then, as $n \to \infty$, \overline{X} approaches the normal distribution $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$. Standardizing, this is equivalent to $Y = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ approaching $\mathcal{N}(0, 1)$. Similarly, as $n \to \infty$, X approaches $\mathcal{N}(n\mu, n\sigma^2)$ and $Y' = \frac{X - n\mu}{\sigma\sqrt{n}}$ approaches $\mathcal{N}(0, 1)$.

It is no surprise that \overline{X} has mean μ and variance σ^2/n – this can be done with simple calculations. The importance of the CLT is that, for large n, regardless of what distribution X_i comes from, \overline{X} is approximately normally distributed with mean μ and variance σ^2/n . Don't forget the continuity correction, only when X_1, \ldots, X_n are discrete random variables.

Here is the **Standard normal table**.

4) Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with density function $f_X(x)$.

$$\mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) f_X(x) dx$$

Task 1 – Joint PMF's

Suppose X and Y have the following joint PMF:

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

a) Identify the range of $X(\Omega_X)$, the range of $Y(\Omega_Y)$, and their joint range $(\Omega_{X,Y})$.

b) Find the marginal PMF for X, $p_X(x)$ for $x \in \Omega_X$.

c) Find the marginal PMF for Y, $p_Y(y)$ for $y \in \Omega_Y$.

d) Are X and Y independent? Why or why not?

e) Find $\mathbb{E}[X^3Y]$.

Task 2 – Do You "Urn" to Learn More About Probability?

Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let $X_i = 1$ if the *i*-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass function of

- a) X_1, X_2
- **b)** X_1, X_2, X_3

Task 3 – Trinomial Distribution

A generalization of the Binomial model is when there is a sequence of n independent trials, but with three outcomes, where $\mathbb{P}(\text{outcome } i) = p_i$ for i = 1, 2, 3 and of course $p_1 + p_2 + p_3 = 1$. Let X_i be the number of times outcome i occurred for i = 1, 2, 3, where $X_1 + X_2 + X_3 = n$. Find the joint PMF $p_{X_1, X_2, X_3}(x_1, x_2, x_3)$ and specify its value for all $x_1, x_2, x_3 \in \mathbb{R}$.

Are X_1 and X_2 independent?

Task 4 – Successes

Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X_1 be the number of failures preceding the first success, and let X_2 be the number of failures after the first success but preceding the second success. Find the joint pmf of X_1 and X_2 . Write an expression for $\mathbb{E}[\sqrt{X_1X_2}]$. You can leave your answer in the form of a sum.

Task 5 – Who fails first?

Here's a question that commonly comes up in industry, but isn't immediately obvious. You have a disk with probability p_1 of failing each day. You have a CPU which independently has probability p_2 of failing each day. What is the probability that your disk fails *before* your CPU?

- a) Compute the probability by summing over the relevant part of the probability space.
- **b)** Try to provide an intuitive reason for the answer.
- c) Recompute the probability using the law of total probability, conditioning on the value of X_1 .

Task 6 – Continuous joint density

The joint density of X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} xe^{-(x+y)} & x > 0, y > 0\\ 0 & \text{otherwise.} \end{cases}$$

and the joint density of W and V is given by

$$f_{W,V}(w,v) = \begin{cases} 2 & 0 < w < v, 0 < v < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Are X and Y independent? Are W and V independent?

Task 7 – Grades and homework turn-in time

Suppose we're currently trying to find a relationship between the time a student turns in their homework and the grade that they receive on the respective homework. Let T denote the amount of time *prior* to the deadline that the homework is submitted. We have observed that no student submits the homework more than 2 days earlier than the deadline, and also no student submits their assignment late, so $0 \le T \le 2$. Now let G be a random variable, indicating the percentage that the student receives on the homework assignment, that is, $0 \le G \le 1$. Suppose G and T are continuous random variables, and their joint pdf is given by

$$f_{G,T}(g,t) = \begin{cases} \frac{9}{10}g^2t + \frac{1}{5} & \text{when } 0 \leq g \leq 1 \text{ and } 0 \leq t \leq 2\\ 0 & \text{otherwise }. \end{cases}$$

For both parts, round your solution to three decimal places.

- a) What is the probability that a randomly selected student gets a grade above 50% on the homework?
- b) What is the probability that a student gets a grade above 50%, given that the student submitted less than a day before the deadline?

Task 8 – Confidence Intervals

Suppose that X_1, \ldots, X_n are i.i.d. samples from a normal distribution with unknown mean μ and variance 36. How big does n need to be so that $\mathbb{E}[\overline{X}] = \mu$ is in

$$[\overline{X} - 0.11, \overline{X} + 0.11]$$

with probability at least 0.97? Recall that

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

You may use the fact that $\Phi^{-1}(0.985) = 2.17$.