CSE 312
Foundations of Computing II
Lecture 10: LOTUS, variance and independence among random variables.
slido.com/3680281

Agenda

- Recap
- LOTUS
- Variance
- Properties of Variance
- Independence of random variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: Ω_{x}
For a RV $X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that $X=x$

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\}) \quad \sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$
F_{X}(x)=P(X \leq x)
$$

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Recap Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

Theorem. For any random variables X, and constants a and b

$$
\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b
$$

Using LOE to compute complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Indicator random variables - 0/1 valued

For any event A, can define the indicator random variable X_{A} for A

$$
X_{A}=\left\{\begin{array}{lll}
1 & \text { if event } A \text { occurs } & \begin{array}{l}
P\left(X_{A}=1\right)=P(A) \\
0
\end{array} \\
\text { if event } A \text { does not occur } & P\left(X_{A}=0\right)=1-P(A)
\end{array}\right.
$$

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Agenda

- Recap
- LOTUS
- Variance
- Properties of Variance
- Independence of random variables

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} b \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}+b\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right]+b .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

$y=g(x)$
 $\forall x$

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

How DO we compute $\mathbb{E}[g(X)]$?

$$
\begin{aligned}
& E(x)=\sum_{\omega \in \Omega} X(\omega) P(\omega) \\
& E(x)=\sum_{x \in \Omega_{x}} x P(X=x)
\end{aligned}
$$

Expected Value of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician

Example: from concept check

$$
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)
$$

- Toss a die; each side equally likely. X is the number showing
- $Y=X \bmod 4$
- What is $\mathbb{E}[Y]$?

$$
g(x)=x \mathrm{mod} 4
$$

$$
E(x)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}
$$

$$
+4 \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}
$$

$$
\begin{aligned}
P(y=0) & =\frac{1}{6} \\
2 & =\frac{1}{3} \\
2 & \frac{1}{3} \frac{1}{6}
\end{aligned}
$$

Agenda

- Recap
- LOTUS
- Variance
- Properties of Variance
- Independence of random variables

Which game would you rather play?
Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1

Which game would you rather play?

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability 2/3.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability 2/3.
$W_{2}=$ payoff in a round of Game 2

$$
P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left[W_{2}\right]=0
$$

$E\left(w_{2}\right)=10 \cdot \frac{1}{3}+(-5)^{2}=0$

Two Games

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$
$2 / 3 \quad 1 / 3$
Somehow, Game 2 has higher volatility / exposure!
ω_{1}
$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$

Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

$$
P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
$$

$2 / 3$

- $1 / 3$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

New quantity (random variable): How far from the expectation?

$$
\left.\begin{array}{rl}
E\left(w_{1}-E\left(w_{1}\right)\right.
\end{array}\right)=E\left(\omega_{1}\right)-E\left(E\left(\omega_{1}\right)\right) .
$$

$$
E(|\omega y>\leqslant(\omega)|)=
$$

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
W_{1}-\mathbb{E}\left[W_{1}\right]
$$

$$
\begin{aligned}
\mathbb{E}\left[W_{1}\right. & \left.-\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& =\mathbb{E}\left(w_{1}^{2}\right) \\
& =2^{2} \cdot \frac{1}{3}+(-1)^{2} \cdot \frac{2}{3}=2
\end{aligned}
$$

$$
E\left(g(0)=\sum_{x \in \rho_{x}} g(x) P(x-x)\right.
$$

Variance (Intuition, Better Try)

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$
A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& \quad=\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& \quad=2
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

We say that W_{2} has "higher variance" than W_{1}.

$$
\operatorname{Var}(W)=\mathbb{E}\left[(W-\mathbb{E}[W])^{2}\right]
$$

$$
g(x)=(x-E(X))^{2}
$$

Variance

$$
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)
$$

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}[X] \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

X fair die

$$
\begin{array}{r}
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x) \\
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
\end{array}
$$

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\begin{aligned} \operatorname{Var}(\mathrm{X}) & =\underbrace{\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}}_{x} \\ & =\frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\ldots+\frac{1}{6}(6-3.5)^{2}\end{aligned}$

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

$$
\sigma^{2}=10
$$

$$
\sigma^{2}=15
$$

$$
\sigma^{2}=19.7
$$

Agenda

- Recap
- LOTUS
- Variance
- Properties of Variance
- Independence of random variables

$$
\begin{aligned}
& \text { Variance - Properties } \\
& \operatorname{Van}(y) \\
& E(x)+b \\
& \text { Definition. The variance of a (discrete) } \mathrm{RV} X \text { is } \\
& \operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \\
& \text { Theorem. For any } a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X) \\
& \text { x } \quad \begin{array}{l}
Y=x+b \\
E(y)=E(x)+b
\end{array} \\
& z=a x \\
& E(2)=a E(X) \\
& \text { X prob } \\
& \begin{array}{ll}
x_{1} & p_{1} \\
x_{1} & p_{1} \\
p_{a}
\end{array} \\
& \begin{array}{l}
a x_{1} \\
a x_{2}
\end{array} p_{1} \\
& a x_{c}+4{ }^{19} \\
& \operatorname{Var}(2)=\sum_{x \in I_{x}} P_{x}(x)(a x-E(2))^{2}
\end{aligned}
$$

$$
\begin{array}{rl}
=\sum_{x} p_{x}(x)^{2}(x-E(x))^{2} & a E(x) \\
= & a^{2} \operatorname{Var}(x)
\end{array}
$$

Variance - Properties

Definition. The variance of a (discrete) RV X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. $\operatorname{Var}(X) \neq \mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$$
\operatorname{Von}(x)=E\left[\left(\frac{x-E(x))^{2}}{b}\right]\right.
$$

$$
=E\left[x^{2}-2 x E(x)+(E(x))^{2}\right]
$$

$\operatorname{LOE} \int^{-2 E\left(x^{2}\right)}+\underset{-E(-2 x E(x))}{-2(x)}+\frac{E\left(E(x)^{2}\right)}{\left(E(x)^{2}\right.}$

$=E\left(x^{2}\right)-[E(x))^{3}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \text { (linearity of } \\
&
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
- $\mathbb{E}\left[X^{2}\right]=\frac{91}{6} \longleftarrow 2^{2} \cdot \frac{1}{6}+2^{2} \frac{1}{6}+\cdots+6^{2} \cdot \frac{1}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$
$E\left[\left(x-e_{x} x^{2}\right)\right]$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\begin{gathered}
\mathbb{E}\left[X_{A}\right]=P(A)=p \\
E\left(X_{A}^{2}\right)=1^{2} P(A)+O^{2}(1-P(A))=p \\
\operatorname{Var}\left(X_{A}\right)=\underbrace{E}_{P}\left[X_{A}^{2}\right]-\underbrace{\mathbb{E}\left[X_{A}\right]^{2}}_{p^{2}}=p-\rho^{2}=p(1-p)
\end{gathered}
$$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\begin{gathered}
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p) \\
p=\frac{1}{2} \quad\left(\operatorname{ar}\left(X_{A}\right)=\frac{1}{2}-\frac{1}{2}=\frac{1}{4}\right.
\end{gathered}
$$

$$
\text { In General, } \operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof by counter-example:
Recall glued coins

- Let X_{1} be a r.v. that indicates if the first coin comes up heads.
- Let X_{2} be a r.v. that indicates if the second coin comes up heads.

$$
\begin{aligned}
& \operatorname{Var}\left(x_{1}\right)=\frac{1}{4} \\
& \operatorname{Var}\left(x_{2}\right)=\frac{1}{4}
\end{aligned}
$$

$\begin{array}{ll}\text { HT } & \frac{1}{2} \\ \text { TH } & \frac{1}{2}\end{array}$
Gust and
$x_{1}+x_{2}$

$$
\operatorname{Var}\left(x_{1}+x_{2}\right)=0
$$

is a cont u/ value 1

$$
\neq \operatorname{Va}-\left(X_{1}\right)+\operatorname{Va}\left(X_{2}\right)
$$

Agenda

- Recap
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=X, Y=(Y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all values!

Example

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up heads.
Let $Y=X \bmod 2$ be the parity (even/odd) of X.
Are X and Y independent?

Poll:
slido.com/3680281
A. Yes

56

Example

Make $2 n$ independent coin flips of the same coin with probability p of coming up heads. .
Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Poll:
slido.com/3680281

A. Yes
B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

$$
\text { Proof } \quad \begin{aligned}
& \text { Let } x_{i}, y_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \mathbb{E}[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
&=\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
&=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \text { independence } \\
&=\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned} \quad \begin{aligned}
\text { Note: } N O T \text { true in general; see earlier example } \mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}
\end{aligned}
$$

(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
&=\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
&=\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
&=\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
&=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { equal by independence }
\end{aligned}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\square \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)$

