
CSE 312

Foundations of Computing II
Lecture 10: LOTUS, variance and independence among 
random variables.
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Agenda

• Recap
• LOTUS
• Variance
• Properties of Variance
• Independence of random variables
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Review Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, 𝑃) is a function 𝑋: Ω → ℝ.

The set of values that 𝑋 can take on is its range/support: 𝑿(𝛀)
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For a RV 𝑋: Ω → ℝ, the probability mass function (pmf) of 𝑋 
specifies, for any real number 𝑥, the probability that 𝑋 = 𝑥	
                    𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 = 𝑃( 𝜔 ∈ Ω	 𝑋(𝜔) = 𝑥})

For a RV 𝑋: Ω → ℝ, the cumulative distribution function (cdf) of 𝑋 
specifies, for any real number 𝑥, the probability that 𝑋 ≤ 𝑥	
                                     𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥

 ∑!∈#! 𝑝$ 𝑥 = 1



Review Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = 5
"∈$

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= 5
%∈$!

𝑥 ⋅ 𝑝!(𝑥)𝔼 𝑋 = 5
%∈$!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Recap Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   

Theorem. For any random variables 𝑋, and constants	𝑎 and 𝑏
                                            𝔼 𝑎𝑋 + 𝑏 = 𝑎 ⋅ 𝔼[𝑋] + 𝑏.   

Or, more generally: For any random variables 𝑋&, … , 𝑋',

𝔼[𝑋& +⋯+ 𝑋'] = 𝔼[𝑋&] + ⋯+ 𝔼[𝑋'].   



Using LOE to compute complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

𝑋 = 𝑋& +⋯+ 𝑋'
● LOE: Apply linearity of expectation.

𝔼[𝑋] = 𝔼[𝑋&] + ⋯+ 𝔼[𝑋'].   
● Conquer: Compute the expectation of each 𝑋(

Often, 𝑋! are indicator (0/1) random variables.



Indicator random variables – 0/1 valued

For any event 𝐴, can define the indicator random variable 𝑋) for 𝐴

𝑋) = A1 if event 𝐴 occurs
0 if event 𝐴 does not occur

𝑃 𝑋% = 1 = 𝑃 𝐴 	
𝑃 𝑋% = 0 = 1 − 𝑃 𝐴

𝐴
Ω

1
0

0.05

0.3
0.2

0

0.05

0.1

0.3

0.55

0.45

ℝ

𝔼 𝑋" = 𝑃 𝐴 = 𝑝



Agenda

• Recap
• LOTUS
• Variance
• Properties of Variance
• Independence of random variables
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Linearity of Expectation – Even stronger
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Theorem. For any random variables 𝑋&, … , 𝑋', and real numbers 
𝑎&, … , 𝑎' ∈ ℝ,

𝔼 𝑎&𝑋& +⋯+ 𝑎'𝑋' + 𝑏 = 𝑎&𝔼 𝑋& +⋯+ 𝑎'𝔼 𝑋' + 𝑏.   

Very important: In general, we do not have 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]  



Linearity is special!

In general 𝔼 𝑔(𝑋) ≠ 𝑔 𝔼 𝑋

E.g., 𝑋 = A +1 with prob 1/2−1 with prob 1/2

Then: 𝔼[𝑋*] ≠ 𝔼[𝑋]*

How DO we compute 𝔼[𝑔 𝑋 ]? 



Expected Value of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑔(𝑋) is   

𝔼 𝑔(𝑋) = 5
"∈$

𝑔 𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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= 5
%∈$!

𝑔(𝑥) ⋅ 𝑝!(𝑥)𝔼 𝑔(𝑋) = 5
%∈$!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)

Also known as LOTUS: “Law of the unconscious statistician

(nothing special going on in the discrete case)



Example: from concept check

• Toss a die; each side equally likely. 𝑋 is the number showing
• 𝑌 = 𝑋 mod 4
• What is 𝔼 𝑌 ?
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𝐏𝐫 𝝎 𝝎 𝑿
1/6 1 1
1/6 2 2
1/6 3 3
1/6 4 4

1/6 5 5
1/6 6 6

𝔼 𝑔(𝑋) = 1
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)



Agenda

• Recap
• LOTUS
• Variance
• Properties of Variance
• Independence of random variables
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Which game would you rather play?
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

𝑊& = payoff in a round of Game 1

𝑃 𝑊& = 2 = &
5
	 , 𝑃 𝑊& = −1 = *

5
 



Which game would you rather play?
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

𝑊& = payoff in a round of Game 1

𝑃 𝑊& = 2 = &
5
	 , 𝑃 𝑊& = −1 = *

5
 

𝔼[𝑊&] = 0

𝑊* = payoff in a round of Game 2
𝔼[𝑊*] = 0

𝑃 𝑊* = 10 = &
5
	 , 𝑃 𝑊* = −5 = *

5
 



Two Games
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𝟎 +𝟏𝟎−𝟓

𝟎−𝟏 𝟐

𝑃 𝑊0 = 2 = 0
1
	 , 𝑃 𝑊0 = −1 = 2

1
 

𝑃 𝑊2 = 10 = 0
1
	 , 𝑃 𝑊2 = −5 = 2

1
 

2/3 1/3

1/3
2/3

Same expectation, but clearly a very different distribution. 
We want to capture the difference – New concept: Variance

Somehow, Game 2 has higher           
volatility / exposure!



Variance (Intuition, First Try)
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𝟎−𝟏 𝟐

𝑃 𝑊0 = 2 = 0
1
	 , 𝑃 𝑊0 = −1 = 2

1
 
2/3

1/3

New quantity (random variable): How far from the expectation?

𝔼[𝑊&] = 0

𝑊& − 𝔼[𝑊&]



Variance (Intuition, First Try)
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𝟎−𝟏 𝟐

𝑃 𝑊0 = 2 = 0
1
	 , 𝑃 𝑊0 = −1 = 2

1
 
2/3

1/3

New quantity (random variable): How far from the expectation?

𝑊& − 𝔼[𝑊&]
𝔼[𝑊& − 𝔼 𝑊& ]

	 = 𝔼 𝑊& − 𝔼 𝔼 𝑊&

= 𝔼 𝑊& − 𝔼 𝑊&
        = 0

𝔼[𝑊&] = 0



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊0 = 2 = 0
1
	 , 𝑃 𝑊0 = −1 = 2

1
 
2/3

1/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊& − 𝔼 𝑊&
*]

	

𝔼[𝑊&] = 0



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊0 = 2 = 0
1
	 , 𝑃 𝑊0 = −1 = 2

1
 
2/3

1/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊& − 𝔼 𝑊&
*]

	 =
2
3
⋅ 1 +

1
3
⋅ 4

	 = 2

𝔼[𝑊&] = 0



Variance (Intuition, Better Try)
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𝟎 +𝟏𝟎−𝟓

𝑃 𝑊2 = 10 = 0
1
	 , 𝑃 𝑊2 = −5 = 2

1
 

1/3
2/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊* − 𝔼 𝑊*
*]

	 =
2
3
⋅ 25 +

1
3
⋅ 100

	 = 50

𝔼[𝑊2] = 0



Variance
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𝔼[Δ 𝑊* ] = 50

𝔼[Δ 𝑊& ] = 2

We say that 𝑊* has “higher variance” than 𝑊&.  

𝑊2

𝑊0
𝟎−𝟏 𝟐

2/3
1/3

𝟎 +𝟏𝟎−𝟓

1/3
2/3

Var 𝑊 = 𝔼 𝑊 − 𝔼[𝑊] *  

Δ(𝑊) = 𝑊 − 𝔼[𝑊] *



Variance
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Definition. The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] * = ∑𝑝! 𝑥 ⋅ 𝑥 − 𝔼[𝑋] *

Standard deviation: 𝜎 𝑋 = Var(𝑋) Recall 𝔼[𝑋] is a 
constant, not a random 
variable itself. 

Intuition: Variance (or standard deviation) is a quantity that measures, 
in expectation, how “far” the random variable is from its expectation. 

𝔼 𝑔(𝑋) = 1
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼 𝑋 = 3.5

40

Var X =5
%

𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] *

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] $ =1
!

𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] $

𝔼 𝑔(𝑋) = 1
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼[𝑋] = 3.5

41

Var X = ∑% 𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] *

= 
1
6

1 − 3.5 2 + 2 − 3.5 2 + 3 − 3.5 2 + 4 − 3.5 2 + 5 − 3.5 2 + 6 − 3.5 2

=
2
6
2.52 + 1.52 + 0.52 =

2
6
25
4
+
9
4
+
1
4
=
35
12

≈ 2.91677…



Variance in Pictures

Captures how much 
“spread’ there is in a pmf

All pmfs have same 
expectation

42



Agenda

• Recap
• LOTUS
• Variance
• Properties of Variance
• Independence of random variables
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Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] * = ∑% 𝑝! 𝑥 ⋅ 𝑥 − 𝔼[𝑋] *

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎* ⋅ Var 𝑋



Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] * = ∑% 𝑝! 𝑥 ⋅ 𝑥 − 𝔼[𝑋] *

Theorem. Var 𝑋 = 𝔼[𝑋*] − 𝔼[𝑋]*



Variance
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Theorem. Var 𝑋 = 𝔼[𝑋*] − 𝔼 𝑋 *

Proof: Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] #

= 𝔼 𝑋# − 2𝔼[𝑋] ⋅ 𝑋 + 𝔼[𝑋]#

= 𝔼 𝑋# − 2𝔼[𝑋]𝔼[𝑋] + 𝔼 𝑋 #

= 𝔼[𝑋#] − 𝔼 𝑋 # (linearity of expectation!)

Recall 𝔼[𝑋] is a constant

𝔼[𝑋2] and 𝔼[𝑋]2
are different !



Variance – Example 1

𝑋 fair die
• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = *&
=

• 𝔼[𝑋*] = >&
=

47

Var X = 𝔼[𝑋*] − 𝔼[𝑋]*=
91
6
−

21
6

*

=
105
36

≈ 2.91677



Variance of Indicator Random Variables

Suppose that 𝑋" is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so
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𝔼 𝑋" = 𝑃 𝐴 = 𝑝

Var 𝑋" = 𝔼 𝑋"# − 𝔼 𝑋" # =



Variance of Indicator Random Variables

Suppose that 𝑋" is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

Since 𝑋" only takes on values 0 and 1, we always have 𝑋"# = 𝑋"
so
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𝔼 𝑋" = 𝑃 𝐴 = 𝑝

Var 𝑋" = 𝔼 𝑋"# − 𝔼 𝑋" # = 𝔼 𝑋" − 𝔼 𝑋" # = 𝑝 − 𝑝# = 𝑝(1 − 𝑝)



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Proof by counter-example:
• Let 𝑋 be a r.v. with pmf 𝑃 𝑋 = 1 = 𝑃 𝑋 = −1 = 1/2
– What is 𝔼[𝑋] and Var(𝑋)?

• Let 𝑌 = −𝑋
– What is 𝔼[𝑌] and Var(𝑌)?

What is Var(𝑋 + 𝑌)?

50
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In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Proof by counter-example:
Recall glued coins
• Let 𝑋0 be a r.v. that indicates if the first coin comes up heads.
• Let 𝑋2 be a r.v. that indicates if the second coin comes up heads.



Brain Break



Agenda

• Recap
• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
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Random Variables and Independence
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Definition. Two random variables 𝑋, Y are (mutually) independent if 
for all 𝑥, 𝑦,

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ⋅ 𝑃(𝑌 = 𝑦)

Definition. The random variables 𝑋&, … , 𝑋' are (mutually) independent if 
for all 𝑥&, … , 𝑥',

𝑃 𝑋& = 𝑥&, … , 𝑋' = 𝑥' = 𝑃 𝑋& = 𝑥& ⋯𝑃(𝑋' = 𝑥')

Note: No need to check for all subsets, but need to check for all values! 

Intuition: Knowing 𝑋 doesn’t help you guess 𝑌 and vice versa 

Comma is shorthand for AND



Example

Let 𝑋 be the number of heads in 𝑛 independent coin flips of the 
same coin with probability 𝑝 of coming up heads. 
Let 𝑌 = 𝑋 mod 2 be the parity (even/odd) of 𝑋. 
Are 𝑋 and 𝑌 independent?
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Example

Let 𝑋 be the number of heads in 𝑛 independent coin flips of the 
same coin with probability 𝑝 of coming up heads. 
Let 𝑌 = 𝑋 mod 2 be the parity (even/odd) of 𝑋. 
Are 𝑋 and 𝑌 independent?
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Poll: 
slido.com/3680281

A.  Yes
B.  No



Example

Make 2𝑛 independent coin flips of the same coin with 
probability 𝑝 of coming up heads. . 
Let 𝑋 be the number of heads in the first 𝑛 flips and 𝑌 be the 
number of heads in the last 𝑛 flips.
Are 𝑋 and 𝑌 independent?
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Example

Make 2𝑛 independent coin flips of the same coin with 
probability 𝑝 of coming up heads. . 
Let 𝑋 be the number of heads in the first 𝑛 flips and 𝑌 be the 
number of heads in the last 𝑛 flips.
Are 𝑋 and 𝑌 independent?
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Poll: 
slido.com/3680281

A.  Yes
B.  No



Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables

59



Important Facts about Independent Random Variables
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋&, 𝑋*, …, 𝑋' mutually independent, 

Var 5
(?&

'

𝑋( =5
(

'

Var(𝑋()



(Not Covered) Proof of 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Proof Let 𝑥(, y(, 𝑖 = 1, 2,…be the possible values of 𝑋, 𝑌.

𝔼 𝑋 ⋅ 𝑌 =1
(

1
)

𝑥( ⋅ 𝑦) ⋅ 𝑃(𝑋 = 𝑥( ∧ 𝑌 = 𝑦))

=1
(

1
)

𝑥( ⋅ 𝑦( ⋅ 𝑃 𝑋 = 𝑥( ⋅ 𝑃(𝑌 = 𝑦))

=1
(

𝑥( ⋅ 𝑃 𝑋 = 𝑥( ⋅ 1
)

𝑦) ⋅ 𝑃(𝑌 = 𝑦))

= 𝔼 𝑋 ⋅ 𝔼[𝑌]

Note: NOT true in general; see earlier example 𝔼[X2]≠𝔼[X]2

independence



(Not Covered) Proof of Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

𝑉𝑎𝑟 𝑋 + 𝑌    

= 𝔼 𝑋 + 𝑌 2 − 𝔼 𝑋 + 𝑌 2 

= 𝔼 𝑋2 + 2𝑋𝑌 + 𝑌2 − 𝔼 𝑋 + 𝔼 𝑌 2 

= 𝔼 𝑋2 + 2	𝔼 𝑋𝑌 + 𝔼 𝑌2 − 𝔼 𝑋 2 + 2	𝔼 𝑋 	𝔼 𝑌 + 𝔼 𝑌 2  
 

= 𝔼 𝑋2 − 𝔼 𝑋 2 + 𝔼 𝑌2 − 𝔼 𝑌 2 + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌   

= 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌       

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 𝑌  
equal by independence

linearity



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋( = A1, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

What is 𝔼[𝑍]?    What is Var(𝑍)?
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𝑃 𝑋3 = 1 = 𝑝 
𝑃 𝑋3 = 0 = 1 − 𝑝 

𝑃 𝑍 = 𝑘 = 4
5 𝑝

5 1 − 𝑝 465 

Fact. 𝑍 = ∑(?&' 𝑋(  

Note: 𝑋&, … , 𝑋' are mutually independent! [Verify it formally!]

Var 𝑍 =5
(?&

'

Var 𝑋( = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋3 = 𝑝(1 − 𝑝)
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