# CSE 312 Foundations of Computing II

Lecture 11: Zoo of Discrete RVs, part I

<u>Slido.com/3680281</u>

midterm: 2 weeks from today

#### Agenda

- Recap
- Independent R.V.s and their properties
- Zoo of Discrete RVs
  - Uniform Random Variables
  - Bernoulli Random Variables
  - Binomial Random Variables
  - Geometric Random Variables

#### **Review Expected Value of a Random Variable**

**Definition.** Given a discrete  $\mathbb{RV} X: \Omega \to \mathbb{R}$ , the **expectation** or **expected value** or **mean** of *X* is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

#### **Another Interpretation**

"If X is how much you win playing the game in one round. How much would you expect to win, <u>on average</u>, per game, when repeatedly playing?"

Answer:  $\mathbb{E}[X]$ 

#### **Another Interpretation**

"If X is how much you win playing the game in one round. How much would you expect to win, <u>on average</u>, per game, when repeatedly playing?"

Answer:  $\mathbb{E}[X]$ 

#### The Law of Large Numbers\*

If  $X_1, X_2, ..., X_n$  are independent and identically distributed (i.i.d.) (all have same pmf), then their average value tends to  $\mathbb{E}[X]$  with probability 1, i.e.,  $\Pr(|\frac{1}{n}\sum_{i=1}^n X_i - \mathbb{E}[X]| \ge \epsilon) \to 0$  as  $n \to \infty$ 

#### **Recap Linearity of Expectation**

**Theorem.** For any two random variables *X* and *Y*  $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$ 

Or, more generally: For any random variables  $X_1, \ldots, X_n$ ,

 $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ 

**Theorem.** For any random variables *X*, and constants *a* and *b*  $\mathbb{E}[aX + b] = a \cdot \mathbb{E}[X] + b.$ 

#### **Recap Using LOE to compute complicated expectations**

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$ 

• <u>LOE</u>: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ 

<u>Conquer</u>: Compute the expectation of each X<sub>i</sub>

Often,  $X_i$  are indicator (0/1) random variables.

#### **Recap Indicator random variables – 0/1 valued**

For any event *A*, can define the indicator random variable  $X_A$  for *A*  $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases} \begin{cases} P(X_A = 1) = P(A) \\ P(X_A = 0) = 1 - P(A) \end{cases}$ 



 $\mathbb{E}[X_A] = P(A) = p$ 

# **Recap Expected Value of** g(X) -- LOTUS



**Definition.** Given a discrete RV  $X: \Omega \to \mathbb{R}$ , the **expectation** or **expected** value or mean of g(X) is

$$\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$$

Also known as LOTUS: "Law of the unconscious statistician

(nothing special going on in the discrete case)





#### **Recap Variance of Indicator Random Variables**

Suppose that  $X_A$  is an indicator RV for event A with P(A) = p so  $\mathbb{E}[X_A] = P(A) = p$ 

Since  $X_A$  only takes on values 0 and 1, we always have  $X_A^2 = X_A$  so

$$Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1-p)$$
is ind
upped fals
$$1^2$$
where fals

# Z= X+Y

# **Recap In General,** $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

Recall glued coins

- Let  $X_1$  be a r.v. that indicates if the first coin comes up heads.
- Let  $X_2$  be a r.v. that indicates if the second coin comes up heads.
- Outcomes are HT and TH, each with probability 0.5
- Therefore,  $X_1$  and  $X_2$  are indicator random variables with probability 0.5 of being 1.
- Therefore, they both have expectation 0.5 and variance 0.25.
- Thus  $Var(X_1) + Var(X_2) = 0.5$
- On the other hand,  $X_1 + X_2$  counts the number of heads in the outcome, which is always 1. Therefore  $Var(X_1 + X_2) = 0$



1X=xg +Y=gg indep

#### **Recap** Random Variables and Independence

#### Comma is shorthand for AND

**Definition.** Two random variables *X*, *Y* are **(mutually) independent** if for al *x*, *y*,  $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$ 

Intuition: Knowing X doesn't help you guess Y and vice versa

**Definition.** The random variables  $X_1, ..., X_n$  are **(mutually) independent** if for all  $x_1, ..., x_n$ ,

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all values!





#### Important Facts about Independent Random Variables

**Theorem.** If *X*, *Y* independent,  $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ 

**Theorem.** If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

**Corollary.** If  $X_1, X_2, ..., X_n$  mutually independent,  $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$ 

### **Proof not covered**

**Theorem.** If *X*, *Y* independent,  $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ 

Proof

Let 
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of  $X, Y$ .  

$$\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j) \quad \text{independence}$$

$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
Note: NOT true in general; see earlier example  $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$ 

# **Proof not covered**

**Theorem.** If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var(X + Y) = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$
  

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$
  

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$
  

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$
  

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$
  

$$= Var(X) + Var(Y)$$
  
equal by independence

#### **Example – Coin Tosses**

We flip n independent coins, each one heads with probability p



#### **Example – Coin Tosses**

We flip *n* independent coins, each one heads with probability *p* 

-  $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ outcome is heads} \\ 0, \ i^{\text{th}} \text{ outcome is tails.} \end{cases}$ Fact.  $Z = \sum_{i=1}^{n} X_i$  $P(X_i = 1) = p$ - Z = number of heads  $P(X_i = 0) = 1 - p$  $\mathbb{E}(X_i) = p$ By LOE  $\mathbb{E}[Z] = \sum_{i=1}^{n} \mathbb{E}(X_i) = np$  $P(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$ Note:  $X_1, \dots, X_n$  are <u>mutually</u> independent!  $Var(Z) = \sum Var(X_i) = n \cdot p(1-p)$ Note  $Var(X_i) = p(1-p)$ 20

#### Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I 🗨
  - Uniform Random Variables
  - Bernoulli Random Variables
  - Binomial Random Variables
  - Geometric Random Variables

#### **Motivation for "Named" Random Variables**

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

# Welcome to the Zoo! (Preview) 🄝 🖘 😂 🦐 🦙 🏠

| $X \sim \text{Unif}(a, b)$                | $X \sim \operatorname{Ber}(p)$                | $X \sim \operatorname{Bin}(n, p)$                              |  |
|-------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--|
| $P(X=k) = \frac{1}{b - a + 1}$            | P(X = 1) = p, P(X = 0) = 1 - p                | $P(X = k) = {\binom{n}{k}} p^k (1 - p)^{n-k}$                  |  |
| $\mathbb{E}[X] = \frac{a+b}{2}$           | $\mathbb{E}[X] = p$                           | $\mathbb{E}[X] = np$                                           |  |
| $Var(X) = \frac{(b-a)(b-a+2)}{12}$        | Var(X) = p(1-p)                               | $\operatorname{Var}(X) = np(1-p)$                              |  |
| V = Coo(m)                                | V = NogDin(m, m)                              |                                                                |  |
| $\Lambda \sim \text{Geo}(p)$              | $X \sim \operatorname{NegBIII}(r, p)$         | $X \sim \text{HypGeo}(N, K, n)$                                |  |
| $P(X = k) = (1 - p)^{k - 1}p$             | $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$ | $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$ |  |
| $\mathbb{E}[X] = \frac{1}{n}$             | $\mathbb{E}[X] = \frac{r}{r}$                 | $\mathbb{E}[X] = n^{K}$                                        |  |
| $\operatorname{Var}(X) = \frac{1-p}{1-p}$ | $\frac{p}{r(1-p)}$                            | $\mathbb{E}[X] = n \frac{1}{N} K(N - K)(N - n)$                |  |
| $Var(\Lambda) = 2$                        | Var(x) =                                      |                                                                |  |

#### Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
  - Uniform Random Variables 🗲
  - Bernoulli Random Variables
  - Binomial Random Variables
  - Geometric Random Variables

#### **Discrete Uniform Random Variables**



A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.





A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.





#### Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
  - Uniform Random Variables
  - Bernoulli Random Variables 🗲
  - Binomial Random Variables
  - Geometric Random Variables

#### **Bernoulli Random Variables**

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation:  $X \sim Ber(p)$ PMF: P(X = 1) = p, P(X = 0) = 1 - pExpectation: Variance: P(X = 1) = p, P(X = 0) = 1 - p



\sim

#### **Bernoulli Random Variables**

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation:  $X \sim Ber(p)$ PMF: P(X = 1) = p, P(X = 0) = 1 - pExpectation:  $\mathbb{E}[X] = p$  Note:  $\mathbb{E}[X^2] = p$ Variance:  $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$ 

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Whether or not a share of a particular stock pays off or not
- Any indicator r.v.

#### Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
  - Uniform Random Variables
  - Bernoulli Random Variables
  - Binomial Random Variables 🗲
  - Geometric Random Variables



X~Bin(n,p)

#### **Binomial Random Variables**

A discrete random variable  $X = \sum_{i=1}^{n} Y_i$  where each  $Y_i$  Ber(*p*) Counts number of successes in *n* independent trials, each with probability *p* of success.

X is a Binomial random variable

unt params



# **Binomial Random Variables**

elt h(x

> A discrete random variable  $X = \sum_{i=1}^{n} Y_i$  where each  $Y_i \sim \text{Ber}(p)$ . Counts number of successes in *n* independent trials, each with probability *p* of success.

*X* is a Binomial random variable

Notation:  $X \sim Bin(n, p)$ PMF:  $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$ Expectation: Variance:

|   | Poll:<br><u>Slido.com/3680281</u> |      |          |  |
|---|-----------------------------------|------|----------|--|
|   |                                   | Mean | Variance |  |
|   | A.                                | p    | p        |  |
| 1 | Β.                                | np   | np(1-p)  |  |
|   | C.                                | np   | $np^2$   |  |
|   | D.                                | np   | $n^2p$   |  |

Bin(n, m)

n k

#### **Binomial Random Variables**

A discrete random variable  $X = \sum_{i=1}^{n} Y_i$  where each  $Y_i \sim \text{Ber}(p)$ . Counts number of successes in *n* independent trials, each with probability *p* of success.

*X* is a Binomial random variable

Notation:  $X \sim Bin(n, p)$ PMF:  $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$ Expectation:  $\mathbb{E}[X] = np$ Variance: Var(X) = np(1-p)

Mean, Variance of the Binomial  
"i.i.d." is a commonly used phrase.  
It means "independent & identically distributed"  
If 
$$Y_1, Y_2, ..., Y_n \sim Ber(p)$$
 and independent (i.i.d.), then  
 $X = \sum_{i=1}^n Y_i, X \sim Bin(n, p)$   
Claim  $\mathbb{E}[X] = np$   
 $\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$   
Claim  $Var(X) = np(1-p)$ 

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1-p)$$

# **Binomial PMFs**

PMF for X ~ Bin(10,0.5)

PMF for X ~ Bin(10,0.25)



# **Binomial PMFs**



PMF for X ~ Bin(30,0.1)

