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Agenda

• Recap
• Independent R.V.s and their properties
• Zoo of Discrete RVs
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Review Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = (
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= (
$∈#!

𝑥 ⋅ 𝑝%(𝑥)𝔼 𝑋 = (
$∈#!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Another Interpretation
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“If 𝑋 is how much you win playing the game in one round. How much 
would you expect to win, on average, per game, when repeatedly 
playing?”
Answer: 𝔼[𝑋]



Another Interpretation
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“If 𝑋 is how much you win playing the game in one round. How much 
would you expect to win, on average, per game, when repeatedly 
playing?”
Answer: 𝔼[𝑋]

The Law of Large Numbers*

If 𝑋&, 𝑋', … , 𝑋( are independent and identically distributed (i.i.d.)  (all have 
same pmf ), then their average value tends to 𝔼[𝑋] with probability 1, i.e.,                     
Pr(	| !

"
∑#$!
" 𝑋# − 𝔼 𝑋 ≥ 𝜖 → 0	 𝑎𝑠	𝑛 → ∞	



Recap Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   

Theorem. For any random variables 𝑋, and constants	𝑎 and 𝑏
                                            𝔼 𝑎𝑋 + 𝑏 = 𝑎 ⋅ 𝔼[𝑋] + 𝑏.   

Or, more generally: For any random variables 𝑋&, … , 𝑋(,

𝔼[𝑋& +⋯+ 𝑋(] = 𝔼[𝑋&] + ⋯+ 𝔼[𝑋(].   



Recap Using LOE to compute complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

𝑋 = 𝑋& +⋯+ 𝑋(
● LOE: Apply linearity of expectation.

𝔼[𝑋] = 𝔼[𝑋&] + ⋯+ 𝔼[𝑋(].   
● Conquer: Compute the expectation of each 𝑋)

Often, 𝑋! are indicator (0/1) random variables.



Recap Indicator random variables – 0/1 valued

For any event 𝐴, can define the indicator random variable 𝑋* for 𝐴

𝑋* = ;1 if event 𝐴 occurs
0 if event 𝐴 does not occur

𝑃 𝑋% = 1 = 𝑃 𝐴 	
𝑃 𝑋% = 0 = 1 − 𝑃 𝐴

𝐴
Ω

1
0

0.05

0.3
0.2

0

0.05

0.1

0.3

0.55

0.45

ℝ

𝔼 𝑋" = 𝑃 𝐴 = 𝑝



Recap Expected Value of 𝑔(𝑋) -- LOTUS

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑔(𝑋) is   

𝔼 𝑔(𝑋) = (
!∈#

𝑔 𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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= (
$∈#!

𝑔(𝑥) ⋅ 𝑝%(𝑥)𝔼 𝑔(𝑋) = (
$∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)

Also known as LOTUS: “Law of the unconscious statistician

(nothing special going on in the discrete case)



Recap Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] ' = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] '

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎' ⋅ Var 𝑋

Theorem. Var 𝑋 = 𝔼[𝑋'] − 𝔼[𝑋]'



Questions

• Can the variance of a random variable be negative?

• Is Var(X + 5) = Var (X) + 5?

• Is it true that if Var(X) = 0, then X is a constant?

• What is the relationship between E(X2) and [E(X)]2  ?
11

The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] & = ∑' 𝑝( 𝑥 ⋅ 𝑥 − 𝔼 𝑋 &.	



Recap Variance of Indicator Random Variables

Suppose that 𝑋" is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

Since 𝑋" only takes on values 0 and 1, we always have 𝑋"# = 𝑋"
so

12

𝔼 𝑋" = 𝑃 𝐴 = 𝑝

Var 𝑋" = 𝔼 𝑋"# − 𝔼 𝑋" # = 𝔼 𝑋" − 𝔼 𝑋" # = 𝑝 − 𝑝# = 𝑝(1 − 𝑝)
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Recap In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Proof by counter-example:
Recall glued coins
• Let 𝑋! be a r.v. that indicates if the first coin comes up heads.
• Let 𝑋& be a r.v. that indicates if the second coin comes up heads.

• Outcomes are HT and TH, each with probability 0.5
• Therefore, 𝑋! and 𝑋&  are indicator random variables with probability 0.5 of being 

1.
• Therefore, they both have expectation 0.5 and variance 0.25.
• Thus 𝑉𝑎𝑟(𝑋!) 	+ 𝑉𝑎𝑟(𝑋& ) = 0.5
• On the other hand, 𝑋! +𝑋& counts the number of heads in the outcome, which is 

always 1. Therefore 𝑉𝑎𝑟(𝑋! +𝑋& ) = 0



Recap Random Variables and Independence
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Definition. Two random variables 𝑋, Y are (mutually) independent if 
for all 𝑥, 𝑦,

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ⋅ 𝑃(𝑌 = 𝑦)

Definition. The random variables 𝑋&, … , 𝑋( are (mutually) independent if 
for all 𝑥&, … , 𝑥(,

𝑃 𝑋& = 𝑥&, … , 𝑋( = 𝑥( = 𝑃 𝑋& = 𝑥& ⋯𝑃(𝑋( = 𝑥()

Note: No need to check for all subsets, but need to check for all values! 

Intuition: Knowing 𝑋 doesn’t help you guess 𝑌 and vice versa 

Comma is shorthand for AND



Important Facts about Independent Random Variables
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋&, 𝑋', …, 𝑋( mutually independent, 

Var (
)+&

(

𝑋) =(
)

(

Var(𝑋))



Proof not covered
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Proof Let 𝑥", y", 𝑖 = 1, 2,…be the possible values of 𝑋, 𝑌.

𝔼 𝑋 ⋅ 𝑌 =1
"

1
#

𝑥" ⋅ 𝑦# ⋅ 𝑃(𝑋 = 𝑥" ∧ 𝑌 = 𝑦#)

=1
"

1
#

𝑥" ⋅ 𝑦" ⋅ 𝑃 𝑋 = 𝑥" ⋅ 𝑃(𝑌 = 𝑦#)

=1
"

𝑥" ⋅ 𝑃 𝑋 = 𝑥" ⋅ 1
#

𝑦# ⋅ 𝑃(𝑌 = 𝑦#)

= 𝔼 𝑋 ⋅ 𝔼[𝑌]

Note: NOT true in general; see earlier example 𝔼[X2]≠𝔼[X]2

independence



Proof not covered
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

𝑉𝑎𝑟 𝑋 + 𝑌    

= 𝔼 𝑋 + 𝑌 & − 𝔼 𝑋 + 𝑌 & 

= 𝔼 𝑋& + 2𝑋𝑌 + 𝑌& − 𝔼 𝑋 + 𝔼 𝑌 & 

= 𝔼 𝑋& + 2	𝔼 𝑋𝑌 + 𝔼 𝑌& − 𝔼 𝑋 & + 2	𝔼 𝑋 	𝔼 𝑌 + 𝔼 𝑌 &  
 

= 𝔼 𝑋& − 𝔼 𝑋 & + 𝔼 𝑌& − 𝔼 𝑌 & + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌   

= 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌       

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 𝑌  
equal by independence

linearity



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋) = ;1, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

By LOE 𝔼 𝑍 = ∑)+&( 𝔼 𝑋) = 𝑛𝑝
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𝑃 𝑋# = 1 = 𝑝 
𝑃 𝑋# = 0 = 1 − 𝑝
	 𝔼 𝑋# = 𝑝 

𝑃 𝑍 = 𝑘 = "
) 𝑝

) 1 − 𝑝 "*) 

Fact. 𝑍 = ∑)+&( 𝑋)  



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋) = ;1, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

By LOE 𝔼 𝑍 = ∑)+&( 𝔼 𝑋) = 𝑛𝑝
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𝑃 𝑋# = 1 = 𝑝 
𝑃 𝑋# = 0 = 1 − 𝑝
	 𝔼 𝑋# = 𝑝 

𝑃 𝑍 = 𝑘 = "
) 𝑝

) 1 − 𝑝 "*) 

Fact. 𝑍 = ∑)+&( 𝑋)  

Note: 𝑋&, … , 𝑋( are mutually independent! 

Var 𝑍 =(
)+&

(

Var 𝑋) = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋# = 𝑝(1 − 𝑝)



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Motivation for “Named” Random Variables

Random Variables that show up all over the place. 
– Easily solve a problem by recognizing it’s a special case of one of 

these random variables.

Each RV introduced today will show:
– A general situation it models
– Its name and parameters
– Its PMF, Expectation, and Variance
– Example scenarios you can use it

22



Welcome to the Zoo! (Preview) 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)

12
	

𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝! 1 − 𝑝 "#!

𝔼 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝$

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
%
"

&#%
'#"
&
'

𝔼 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁$(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝" 1 − 𝑝 '#"

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#(𝑝

𝔼 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝$



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (integer) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

25

Example: value shown on one 
roll of a fair die is Unif(1,6):

•  𝑃(𝑋 = 𝑖) = 1/6
• 	𝔼 𝑋 = 7/2
•  Var 𝑋 = 35/12



Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (integer) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation: 𝑋 ∼ Unif(𝑎, 𝑏)

PMF: P 𝑋 = 𝑖 = &
, -./&

Expectation: 𝔼 𝑋 = ./,
'

Variance: Var(𝑋) = (,-.)(, -./')
&'

26

Example: value shown on one 
roll of a fair die is Unif(1,6):

•  𝑃(𝑋 = 𝑖) = 1/6
• 	𝔼 𝑋 = 7/2
•  Var 𝑋 = 35/12



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.
Notation: 𝑋 ∼ Ber(𝑝)
PMF: 𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝
Expectation: 
Variance:

28

Poll: 
Slido.com/3680281
   Mean Variance
A.  𝑝   𝑝
B.  𝑝   1 − 𝑝
C.  𝑝   𝑝(1 − 𝑝)
D. 	𝑝   𝑝&

https://www.slido.com/


Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.
Notation: 𝑋 ∼ Ber(𝑝)
PMF: 𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝
Expectation: 𝔼 𝑋 = 𝑝 Note: 𝔼 𝑋' = 𝑝
Variance: Var 𝑋 = 𝔼 𝑋' − 𝔼 𝑋 ' = 𝑝 − 𝑝' = 𝑝(1 − 𝑝)

29

Examples:
• Coin flip
• Randomly guessing on a MC test question
• A server in a cluster fails
• Whether or not a share of a particular stock pays off or not
• Any indicator r.v.



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Binomial Random Variables

A discrete random variable 𝑋 = ∑#$!
" 𝑌# where each 𝑌# ∼ Ber 𝑝 .

Counts number of successes in 𝑛 independent trials, each with probability 𝑝 of 
success.                                                     
𝑋 is a Binomial random variable

31

Examples:
• # of heads in 𝑛 indep coin flips
• # of 1s in a randomly generated n 

bit string
• # of servers that fail in a cluster of 

𝑛	computers
• # of bit errors in file written to disk
• # of elements in a bucket of a 

large hash table
• # of 𝑛 different stocks that “pay 

off”

Poll: 
Slido.com/3680281 

𝑃 𝑋 = 𝑘 =	
A.  𝑝) 1 − 𝑝 "*)

B.  𝑛𝑝
C. "

) 𝑝
) 1 − 𝑝 "*)

D. "
"*) 𝑝

) 1 − 𝑝 "*)

https://www.slido.com/


Binomial Random Variables

A discrete random variable 𝑋 = ∑)+&( 𝑌) where each 𝑌) ∼ Ber 𝑝 .
Counts number of successes in 𝑛 independent trials, each with 
probability 𝑝 of success.                                                     
𝑋 is a Binomial random variable

Notation: 𝑋 ∼ Bin(𝑛, 𝑝)
PMF: 𝑃 𝑋 = 𝑘 = (

4 𝑝
4 1 − 𝑝 (-4

Expectation:
Variance:

32

Poll: 
Slido.com/3680281
 Mean  Variance
A. 	𝑝    𝑝
B. 	𝑛𝑝    𝑛𝑝(1 − 𝑝)
C. 	𝑛𝑝    𝑛𝑝&
D. 	𝑛𝑝    𝑛&𝑝

https://www.slido.com/


Binomial Random Variables

A discrete random variable 𝑋 = ∑)+&( 𝑌) where each 𝑌) ∼ Ber 𝑝 .
Counts number of successes in 𝑛 independent trials, each with 
probability 𝑝 of success.                                                     
𝑋 is a Binomial random variable

Notation: 𝑋 ∼ Bin(𝑛, 𝑝)
PMF: 𝑃 𝑋 = 𝑘 = (

4 𝑝
4 1 − 𝑝 (-4

Expectation: 𝔼 𝑋 = 𝑛𝑝
Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)

33



Mean, Variance of the Binomial

If 𝑌#, 𝑌$, … , 𝑌% ∼ Ber(𝑝) and independent (i.i.d.), then
𝑋 = ∑&'#

% 𝑌& ,    𝑋 ∼ Bin(𝑛, 𝑝)

Claim 𝔼 𝑋 = 𝑛𝑝

𝔼 𝑋 = 𝔼 2
&'#

%

𝑌& =2
&'#

%

𝔼[𝑌&] = 𝑛𝔼 𝑌# = 𝑛𝑝

Claim Var 𝑋 = 𝑛𝑝 1 − 𝑝

Var 𝑋 = Var 2
&'#

%

𝑌& =2
&'#

%

Var 𝑌& = 𝑛Var 𝑌# = 𝑛𝑝(1 − 𝑝)

34

“i.i.d.” is a commonly used phrase.
It means “independent & identically distributed”



Binomial PMFs

35



Binomial PMFs

36



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
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Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌) ∼ Ber 𝑝 before seeing the first success. 
𝑋 is called a Geometric random variable with parameter 𝑝. 

Notation: 𝑋 ∼ Geo(𝑝)
PMF: 
Expectation:
Variance:

38

Examples:
•  # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌) ∼ Ber 𝑝 before seeing the first success.
𝑋 is called a Geometric random variable with parameter 𝑝. 
Notation: 𝑋 ∼ Geo(𝑝)
PMF: 𝑃 𝑋 = 𝑘 = 1 − 𝑝 4-&𝑝

Expectation: 𝔼 𝑋 = &
5

Variance: Var 𝑋 = &-5
5%
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Examples:
•  # of coin flips until first head
• # of random guesses on MC 

questions until you get one 
right

• # of random guesses at a 
password until you hit it

• # hash trials until a miner 
successfully mines a Bitcoin



Agenda

• Independent R.V.s and their properties
• Zoo of Discrete RVs, Part I
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
– More examples

40



Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). 
Let 𝑋 be the number of corrupted bits. 
What kind of random variable is this and what is 𝔼[𝑋]? 

41

Poll: 
Slido.com/3680281
A    1022.99
B    1.024
C 1.02298
D.   1

https://www.slido.com/


Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let 𝑋 be the number of times you 
have to play the song from the start. What kind of random variable is this and what 
is 𝔼[𝑋]?

42
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• Zoo of Discrete RVs
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random variables

– Examples
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

44



Preview: Poisson

Model: 𝑋 is # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in 𝑡 hours, is 3𝑡
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

𝑋 = # of cars passing through a light in 1 hour

45



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour. 

46

𝔼[𝑋] = 3

1/𝑛

Assume:   Occurrence of events on disjoint time intervals is independent

Divide hour into 𝑛 intervals of length 1/𝑛Approximation idea:



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 3

1 hour

10 0 1 10 0 0 0 1 1 0

1/𝑛

This gives us 𝑛 independent intervals

Assume either zero or one car per interval

𝑝 =	probability car arrives in an interval

What should 𝑝 be?
Slido.com/3680281 
A.  3/𝑛
B.  3𝑛 
C.  3
D.  3/60

https://www.slido.com/


Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 𝜆 for some given 𝜆 > 0 

1 hour

Discrete version: 𝑛 intervals, each of length 1/𝑛 . 
In each interval, there is a car with probability 𝑝 = 𝜆/𝑛 (assume ≤ 1 car can pass by)

Each interval is Bernoulli: 𝑋# = 1 if car in 𝑖th interval (0 otherwise). 𝑃(𝑋# = 1) = 𝜆	/𝑛

𝑋 = ∑)+&( 𝑋)  

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑋~	Bin(𝑛, 𝑝)   𝑃 𝑋 = 𝑖 = (
)

6
(

)
1 − 6

(

(-)

indeed! 𝔼 𝑋 = 𝑝𝑛 = 𝜆



Don’t like discretization
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We want now 𝑛 → ∞

𝑋 is binomial 𝑃 𝑋 = 𝑖 = !
"

#
!

"
1 − #

!

!$"

1/𝑛



Don’t like discretization
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We want now 𝑛 → ∞

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

)

1 −
𝜆
𝑛

(-)

=
𝑛!

𝑛 − 𝑖 ! 𝑛)
𝜆)

𝑖!
1 −

𝜆
𝑛

(

1 −
𝜆
𝑛

-)

	

𝑋 is binomial 𝑃 𝑋 = 𝑖 = !
"

#
!

"
1 − #

!

!$"

1/𝑛

→ 1 → 1→ 𝑒*R
→ 𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :

(

!!
	



Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 𝜆 per 
unit time.

• Let 𝑋 be the actual number of events happening in a given time 
unit. Then 𝑋 is a Poisson r.v. with parameter 𝜆 (denoted 𝑋 ~ Poi(𝜆)) 
and has distribution (PMF):
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𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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0
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0.1

0.15
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0.25

0.3
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𝜆 = 2 

𝜆 = 5 

𝜆 = 10 

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	

This Photo by Unknown Author is licensed 
under CC BY-NC

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

Is this a valid probability mass function?
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𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	 𝑖 = 0, 1, 2, …



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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(
)+=

>

𝑃 𝑋 = 𝑖 =(
)+=

>

𝑒-6 ⋅
𝜆)

𝑖!
= 𝑒-6 (

)+=

>
𝜆)

𝑖!

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	

Fact (Taylor series expansion):

𝑒$ =(
)+=

>
𝑥)

𝑖!



Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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(
)+=

>

𝑃 𝑋 = 𝑖 =(
)+=

>

𝑒-6 ⋅
𝜆)

𝑖!
= 𝑒-6 (

)+=

>
𝜆)

𝑖!

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	

Fact (Taylor series expansion):

𝑒$ =(
)+=

>
𝑥)

𝑖!

= 𝑒-6𝑒6 = 1



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆 ≥ 0, then
𝔼 𝑋 =	?

𝔼[𝑋] = (
)+=

>

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	Proof.

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼 𝑋 = 𝜆

𝔼[𝑋] = (
)+=

>

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	(
)+=

>

𝑒-6 ⋅
𝜆)

𝑖!
⋅ 𝑖 = (

)+&

>

𝑒-6 ⋅
𝜆)

(𝑖 − 1)!

= 𝜆	(
)+&

>

𝑒-6 ⋅
𝜆)-&

(𝑖 − 1)!

= 𝜆	(
)+=

>

𝑒-6 ⋅
𝜆)

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋& =^
#$S

T

𝑃 𝑋 = 𝑖 ⋅ 𝑖& =^
#$S

T

𝑒*R ⋅
𝜆#

𝑖!
⋅ 𝑖& =^

#$!

T

𝑒*R ⋅
𝜆#

(𝑖 − 1)!
𝑖

= 𝜆^
#$!

T

𝑒*R ⋅
𝜆#*!

(𝑖 − 1)!
⋅ 𝑖 = 𝜆^

U$S

T

𝑒*R ⋅
𝜆U

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 ^
U$S

T

𝑒*R ⋅
𝜆U

𝑗!
⋅ 𝑗 +^

U$S

T

𝑒*R ⋅
𝜆U

𝑗!
= 𝜆& + 𝜆

= 𝔼[𝑋] = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼[𝑋'] − 𝔼[𝑋]'= 𝜆' + 𝜆 − 𝜆' = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒9: ⋅ :
(

!!
	


