CSE 312
Foundations of Computing II
Lecture 11: Zoo of Discrete RVs, part I

Slido.com/3680281

Agenda

- Recap
- Independent R.V.s and their properties
- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"
Answer: $\mathbb{E}[X]$

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"
Answer: $\mathbb{E}[X]$

The Law of Large Numbers*
If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed (i.i.d.) (all have same pmf), then their average value tends to $\mathbb{E}[X]$ with probability 1 , i.e., $\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right| \geq \epsilon\right) \rightarrow 0 \quad$ as $n \rightarrow \infty$

Recap Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

Theorem. For any random variables X, and constants a and b

$$
\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b
$$

Recap Using LOE to compute complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Recap Indicator random variables - 0/1 valued

For any event A, can define the indicator random variable X_{A} for A

$$
X_{A}=\left\{\begin{array}{ll}
1 & \text { if event } A \text { occurs } \\
0 & \text { if event } A \text { does not occur }
\end{array} \begin{array}{l}
P\left(X_{A}=1\right)=P(A) \\
P\left(X_{A}=0\right)=1-P(A)
\end{array}\right.
$$

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Recap Expected Value of $g(X)$-- LOTUS

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician

Recap Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Questions
The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2} .
$$

- Can the variance of a random variable be negative?
- Is $\operatorname{Var}(X+5)=\operatorname{Var}(X)+5$?
- Is it true that if $\operatorname{Var}(X)=0$, then X is a constant?
- What is the relationship between $\mathrm{E}\left(\mathrm{X}^{2}\right)$ and $[\mathrm{E}(\mathrm{X})]^{2}$?

Recap Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p)
$$

Recap In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof by counter-example:
Recall glued coins

- Let X_{1} be a r.v. that indicates if the first coin comes up heads.
- Let X_{2} be a r.v. that indicates if the second coin comes up heads.
- Outcomes are HT and TH, each with probability 0.5
- Therefore, X_{1} and X_{2} are indicator random variables with probability 0.5 of being 1.
- Therefore, they both have expectation 0.5 and variance 0.25 .
- Thus $\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=0.5$
- On the other hand, $X_{1}+X_{2}$ counts the number of heads in the outcome, which is always 1. Therefore $\operatorname{Var}\left(X_{1}+X_{2}\right)=0$

Recap Random Variables and Independence

Comma is shorthand for AND
Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all values!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Proof not covered

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

$$
\text { Proof } \quad \begin{aligned}
& \text { Let } x_{i}, y_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \mathbb{E}[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
&=\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
&=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \text { independence } \\
&=\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned} \quad \begin{aligned}
\text { Note: } N O T \text { true in general; see earlier example } \mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}
\end{aligned}
$$

Proof not covered

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { equal by independence }
\end{aligned}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}= \begin{cases}1, & i^{\text {th }} \text { outcome is heads } \\ 0, & i^{\text {th }} \text { outcome is tails. }\end{cases}$
- $Z=$ number of heads

By LOE $\mathbb{E}[Z]=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=n p$

Fact. $Z=\sum_{i=1}^{n} X_{i}$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p \\
& \mathbb{E}\left(X_{i}\right)=p
\end{aligned}
$$

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}= \begin{cases}1, & i^{\text {th }} \text { outcome is heads } \\ 0, & i^{\text {th }} \text { outcome is tails. }\end{cases}$
- $Z=$ number of heads

By LOE $\mathbb{E}[Z]=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=n p$
Fact. $Z=\sum_{i=1}^{n} X_{i}$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p \\
& \mathbb{E}\left(X_{i}\right)=p
\end{aligned}
$$

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent!
$\square \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p)$
Note $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Geo}(p)$

$P(X=k)=(1-p)^{k-1} p$
$\mathbb{E}[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$X \sim \operatorname{Ber}(p)$

$$
\begin{aligned}
& P(X=1)=p, P(X=0)=1-p \\
& \mathbb{E}[X]=p
\end{aligned}
$$

$$
\operatorname{Var}(X)=p(1-p)
$$

$X \sim \operatorname{NegBin}(r, p)$
$P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
$\mathbb{E}[X]=\frac{r}{p}$
$\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

$$
\mathbb{E}[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
$$

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:
PMF:
Expectation:
Variance:

Example: value shown on one roll of a fair die is $\operatorname{Unif}(1,6)$:

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}(a, b)$
PMF: $\mathrm{P}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is $\operatorname{Unif}(1,6)$:

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation:
Variance:

Poll:		
Slido.com		
Mean		Variance
A.	p	p
B.	p	$1-p$
C.	p	$p(1-p)$
D.	p	p^{2}

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p \quad$ Note: $\mathbb{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)$
Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Whether or not a share of a particular stock pays off or not
- Any indicator r.v.

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Binomial Random Variables

A discrete random variable $X=\sum_{i=1}^{n} Y_{i}$ where each $Y_{i} \sim \operatorname{Ber}(p)$.
Counts number of successes in n independent trials, each with probability p of success.
X is a Binomial random variable

Examples:

- \# of heads in n indep coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table
- \# of n different stocks that "pay off"

Poll:

Slido.com/3680281
$P(X=k)=$
A. $p^{k}(1-p)^{n-k}$
B. $n p$
C. $\binom{n}{k} p^{k}(1-p)^{n-k}$
D. $\binom{n}{n-k} p^{k}(1-p)^{n-k}$

Binomial Random Variables

A discrete random variable $X=\sum_{i=1}^{n} Y_{i}$ where each $Y_{i} \sim \operatorname{Ber}(p)$. Counts number of successes in n independent trials, each with probability p of success.
X is a Binomial random variable

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation:
Variance:

Poll:
Slido.com/3680281
Mean Variance
A. p
p
B. $n p$
$n p(1-p)$
C. $n p$
D. $n p$
$n p^{2}$
$n^{2} p$

Binomial Random Variables

A discrete random variable $X=\sum_{i=1}^{n} Y_{i}$ where each $Y_{i} \sim \operatorname{Ber}(p)$.
Counts number of successes in n independent trials, each with probability p of success.
X is a Binomial random variable

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial

"i.i.d." is a commonly used phrase.
It means "independent \& identically distributed"
If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d.), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$

Claim $\mathbb{E}[X]=n p$

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 5})$

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 2 5})$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, 0.5)$

PMF for $X \sim \operatorname{Bin}(30,0.1)$

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.
Notation: $X \sim \operatorname{Geo}(p)$

PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it
- \# hash trials until a miner successfully mines a Bitcoin

Agenda

- Independent R.V.s and their properties
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- More examples

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What kind of random variable is this and what is $\mathbb{E}[X]$?

```
Poll:
Slido.com/3680281
A 1022.99
B 1.024
C 1.02298
D. }
```


Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What kind of random variable is this and what is $\mathbb{E}[X]$?

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random variables
- Examples
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: X is \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=$ \# of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour
$X=\#$ cars passing through a light in 1 hour. $\mathbb{E}[X]=3$
Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X]=3$

What should p be?
This gives us n independent intervals
Assume either zero or one car per interval
Slido.com/3680281
A. $3 / n$
B. $3 n$
C. 3
D. $3 / 60$

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& \text { indeed! } \mathbb{E}[X]=p n=\lambda
\end{aligned}
$$

Don't like discretization

We want now $n \rightarrow \infty$

Don't like discretization

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!} \\
& \rightarrow P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda($ denoted $X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour

Assume
fixed average rate

- \# of patients arriving to ER within an hour

Probability Mass Function

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \quad i=0,1,2, \ldots
$$

Is this a valid probability mass function?

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=e^{-\lambda} \underbrace{\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}}_{\substack{\infty}}
$$

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=e^{-\lambda} \underbrace{\sum_{i=1}^{\lambda^{i}}}_{\substack{i=0}} \frac{\underbrace{-\lambda}}{i!}=e^{\lambda}=1
$$

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter $\lambda \geq 0$, then

$$
\mathbb{E}[X]=?
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson $\mathrm{R} \vee$ with parameter λ, then

$$
\mathbb{E}[X]=\lambda
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=1 \text { (see prior slides!) } \\
& =\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left[X^{2}\right]=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
$=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$
$=\lambda[\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j}+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda$
Similar to the previous proof $=\mathbb{E}[X]=\lambda \quad=1 \quad$ Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

