CSE 312
Foundations of Computing II
Lecture 12: Zoo of Discrete RVs, continued

Slido.com/3680281

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables - last time
- Bernoulli Random Variables - last time
- Binomial Random Variables - last time
- Geometric Random Variables
- Poisson Random Variables

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Geo}(p)$

$P(X=k)=(1-p)^{k-1} p$
$\mathbb{E}[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$X \sim \operatorname{Ber}(p)$

$$
\begin{aligned}
& P(X=1)=p, P(X=0)=1-p \\
& \mathbb{E}[X]=p
\end{aligned}
$$

$$
\operatorname{Var}(X)=p(1-p)
$$

$X \sim \operatorname{NegBin}(r, p)$
$P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
$\mathbb{E}[X]=\frac{r}{p}$
$\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

$$
\mathbb{E}[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
$$

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}(a, b)$
Range: $\Omega_{X}=\{a, a+1, \ldots, b\}$
PMF: $\mathrm{P}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is $\operatorname{Unif}(1,6)$:

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Indicater

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
Range: $\Omega_{X}=\{0,1\}$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p \quad$ Note: $\mathbb{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)$
Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Whether or not a share of a particular stock pays off or not
- Any indicator r.v.

Binomial Random Variables

A discrete random variable $X=\sum_{i=1}^{n} Y_{i}$ where each $Y_{i} \sim \operatorname{Ber}(p)$.
Counts number of successes in n independent trials, each with probability p of success.
X is a Binomial random variable
Notation: $X \sim \operatorname{Bin}(n, p)$
Range: $\Omega_{X}=\{0,1,2, \ldots, n\}$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Examples:

- \# of heads in n indep coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a particular bucket of a large hash table
- \# of n different stocks that "pay off"

HHTHTTTT $k=3 \quad n=8$

Mean, Variance of the Binomial "i.i.d." is a commonly used phrase.

It means "independent \& identically distributed"
If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d.), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$
Claim $\mathbb{E}[X]=n p$

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\begin{gathered}
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)={\underset{\sim}{i=1}}_{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p) \\
\text { Independence } \\
\text { of } Y^{\prime} i^{\prime} \text { S. }
\end{gathered}
$$

Agenda

- Zoo of Discrete RVs
- Recap
- Geometric Random Variables
- Poisson Random Variables

pi Prob fincess

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Examples:

Notation: $X \sim \operatorname{Geo}(p)$
Range: $\Omega_{X}=\{1,2,3, \ldots$
PMF: $P(X=k)=(6, j)^{k-i}$
Expectation:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.
Notation: $X \sim \operatorname{Geo}(p)$
Range: $\Omega_{X}=\{1,2,3, \ldots$.
PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it
- \# hash trials until a miner successfully mines a Bitcoin

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- More examples

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What kind of random variable is this and what is $\mathbb{E}[X]$?
Binomial

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What kind of random variable is this and what is $\mathbb{E}[X]$?

Binomial (1024, 0.001)

Therefore $\mathbb{E}[X]=n p=1024 \cdot 0.001=1.024$

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What kind of random variable is this and what is $\mathbb{E}[X]$?

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What kind of random variable is this and what is $\mathbb{E}[X]$?

Probability that you play whole song without a mistake is 0.999^{1000}
Therefore X is a Geometric random variable with parameter $p=0.999^{1000}$
So its expectation is $\frac{1}{0.999^{1000}}$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random variables
- Examples
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution

Model: X is \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=$ \# of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour
$X=\#$ cars passing through a light in 1 hour. $\mathbb{E}[X]=3$
Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

This gives us n independent intervals
Assume either zero or one car per interval
$p=$ probability car arrives in a single
 interval of length $1 / n$

Example - Model the process of cars passing through a light in 1 hour

$X=$ \# cars passing through a light in 1 hour. Disjoint time intervals are independent.

This gives us n independent intervals
Assume either zero or one car per interval
$p=$ probability car arrives in an interval
Model as $\operatorname{Bin}(n, p)$

$$
\begin{aligned}
& E(x)=n p=3 \\
& \Rightarrow p=\frac{3}{n}
\end{aligned}
$$

What should p be?
Slido.com/3680281
A. $3 / n$
B. $3 n$
C. 3
D. $3 / 60$

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent.
Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& \text { indeed! } \mathbb{E}[X]=p n=\lambda
\end{aligned}
$$

Don't like discretization

We want now $n \rightarrow \infty$

$$
P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

$$
P(X=0)=\binom{n}{0}\left(\frac{\pi}{n}\right)^{0}\left(-\frac{a}{a}\right)^{n-0}
$$

Don't like discretization

$$
X \text { is binomial } P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

We want now $n \rightarrow \infty$

$$
P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\underbrace{\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!}}_{\rightarrow 1} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-i}}_{\rightarrow e^{-\lambda}}
$$

$$
e^{-x}=!-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}
$$

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda($ denoted $X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \quad i=0,1,2, \ldots
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour

Assume
fixed average rate

- \# of patients arriving to ER within an hour

Probability Mass Function

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \quad i=0,1,2, \ldots
$$

Is this a valid probability mass function?
(How do you show that a pmf is valid?)

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

To show that a pmf is valid, need to check that it takes nonnegative values and that the probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=e^{-\lambda} \sum_{\substack{\infty}}^{\infty} \frac{\lambda^{i}}{i!}=e^{\lambda}=1
$$

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter $\lambda \geq 0$, then

$$
\mathbb{E}[X]=?
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson $\mathrm{R} V$ with parameter λ, then

$$
\mathbb{E}[X]=\lambda
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda(\text { see prior slides!) } \\
& i!1=\lambda
\end{aligned}
$$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left[X^{2}\right]=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
$=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$
$=\lambda[\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j}+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda$
Similar to the previous proof
Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications
- Negative Binomial Random Variables
- Hypergeometric Random Variables

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates binomial when: n is very large, p is very small, and $\lambda=n p$ is "moderate" e.g. $(n>20$ and $p<0.05)$, $(n>100$ and $p<0.1)$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

$$
\begin{aligned}
& \lambda=5 \\
& p=\frac{5}{n} \\
& n=10,15,20
\end{aligned}
$$

From Binomial to Poisson

\[

\]

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$

What is probability that message arrives uncorrupted?
Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=0.01\right)$

$$
P(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!} \approx 0.990049834
$$

Using $Y \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
P(Y=0) \approx 0.990049829
$$

Sum of Independent Poisson RVs

X \& Y indep.

Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. What kind of random variable is Z ?
Aka what is the "distribution" of Z ?

Intuition first:

- X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_{1} per hour.
- Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_{2} per hour.
- Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

indep

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Proof

$$
\begin{aligned}
& P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) \quad \text { Law of total probability } \\
& \lim _{y}^{\ln \alpha x^{\alpha}}=\sum_{j=0}^{2} e^{-\lambda_{1}} \frac{\lambda_{1}}{j!} e^{-\lambda_{2}} \frac{\lambda_{2}^{2-j}}{(2-j)!} \quad \begin{array}{l}
1 \\
2
\end{array} e^{2-1} \begin{array}{l}
2-2
\end{array}
\end{aligned}
$$

Proof

$$
\begin{aligned}
& P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) \quad \text { Law of total probability } \\
& =\sum_{j=0}^{Z} P(X=j) P(Y=z-j)=\sum_{j=0}^{z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
& =e^{-\lambda_{1}-\lambda_{2}}\left(\sum_{j=0}^{z} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \\
& =e^{-\lambda}\left(\sum_{j=0}^{Z} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} \quad \\
& =e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad \begin{array}{ll}
\text { Binomial } & \text { Theorem }
\end{array}
\end{aligned}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

