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Motivation for “Named’” Random Variables

Random Variables that show up all over the place.

— Easily solve a problem by recognizing it’s a special case of one of
these random variables.

Each RV introduced today will show:
— A general situation it models
— Its name and parameters
— Its PMF, Expectation, and Variance
— Example scenarios you can use it



Agenda

e Z00 of Discrete RVs a
— Uniform Random Variables - last time
— Bernoulli Random Variables - last time
— Binomial Random Variables - last time
— Geometric Random Variables
— Poisson Random Variables



Welcome to the Zoo! (Preview) R ® MY n

X ~ Unif(a, b) X ~ Ber(p) X ~ Bin(n,p)

P = k>—b_a+1 PX=1)=pPX=0)=1-p Px =k =(,)pka-p)*
_a+b k
E[X] = > E[X]=p E[X] = np
b—a)(b—a+2)
Var(X) = 1 Var(X) = p(1 — p) Var(X) = np(1 — p)
K
PX = kl) =1-p)p P(X =k) = (r 1)p (1—p)kr PX=k) = G )((N)
E[X] == E[X] = — kK
pl—p ’ (1-p) R
_ r(l—p _ _
GO p? Var(X) = P2 Var(X) = nK(NN2 (Z)ENI) ")



Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value
between integers a and b (inclusive), is uniform.

Notation: X ~ Unif(a, b) Example: value shown on one
“roll of a fair die is Unif(1,6):
Range: Oy = {a, a-+1, ---,b} e PX=i)=1/6
. —_ iy —_ 1 -+ E[X]=7/2
PMF: P(X = 1) b—-a+1 e Var(X) =35/12 :
Expectation: E[X| = a—;rb N
Variance: Var(X) = (b_a)(fz_aﬂ) £ £ I l l I l I
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Bernoulli Random Variables

A random variable X that takes value 1 (“Success”) with probability p,
and 0 (“Failure”) otherwise. X is called a Bernoulli random variable.

Notation: X ~ Ber(p)

Range: (), = {0, 1}
PMF:P(X=1)=p,P(X=0)=1—-p

Expectation: E[X| =p  Note: E[X*] =p

Variance: Var(X) = E[X?] — E[X]* =p —p? =p(1 —p)

Examples:
-« Coinflip
* Randomly guessing on a MC test question
* Aserverin a cluster fails
* Whether or not a share of a particular stock pays off or not
* Any indicator r.v.



Binomial Random Variables

A discrete random variable X = }**_, ¥; where each Y; ~ Ber(p).

Counts number of successes in n independent trials, each with
probability p of success.

X is a Binomial random variable | (Bl o L
| * #of heads in nindep coin flips
Notation: X ~ Bin(n,p) .+ #of1sinarandomly generated n
§ bit string ,
Range: (1y = {0,1,2,...,n} * #of servers that fail in a cluster of |
. - _ (M. k(1 _ \n—-k § n computers |
PMF: P(X o k) o (k)p (1 p) « #of bit errors in file written to disk
¢ .. _ § * #of elements in a particular '
Expectation: E[X| = np bucket of a large hash table
Variance: Var(X) = np(1 — p) .+ #ofndifferent stocks that “pay
= off”



Mean, Variance of the Binomial ... ... commonTy eI

It means “independent & identically distributed”

1fY,,Y,, ..., Y, ~ Ber(p) and independent (i.i.d.), then
X = 271'1=1 Yi, X~ Bin(n, p)

Claim E[X]| = np

Claim Var(X) = np(1 — p)

Y; Var(Y;) = nVar(Y;) = np(1 — p)

'M=

Var(X) = Var(

n
=1 =1



Agenda

e Z00 of Discrete RVs
— Recap
— Geometric Random Variables
— Poisson Random Variables



Geometric Random Variables

A discrete random variable X that models the number of independent
trials Y; ~ Ber(p) before seeing the first success.

X is called a Geometric random variable with parameter p.

Examples:
Notation: X ~ Geo(p) . : ogcoin flips until first
| ea
Range: ~+ #ofrandom guesses on
PMF: MC questions until you
Expectation: 2 O3 RIS

.+ #ofrandom guesses at a
Variance: password until you hit it



Geometric Random Variables

A discrete random variable X that models the number of independent
trials Y; ~ Ber(p) before seeing the first success.

X is called a Geometric random variable with parameter p.
Notation: X ~ Geo(p)
Range: Oy = {1,2,3,.... } Examples:

K—1 « # of coin flips until first head
PMF: P(X = k) =(1—-p)*'p « #of random guesses on MC

. A . . .
Expectation: E[X] = - i c:!uestlons until you get one
p | right
. ] _1-p ~ » #ofrandom guesses at a
Variance: Var(X) = p2 password until you hit it

e #hash trials until a miner
successfully mines a Bitcoin |,



Agenda

e Z00 of Discrete RVs
— Uniform Random Variables
— Bernoulli Random Variables
— Binomial Random Variables
— Geometric Random Variables
— More examples <@
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999
of correctly sending each bit in the message without corruption (independent of
other bits).

Let X be the number of corrupted bits.
What kind of random variable is this and what is E[X|?

13



Example

Sending a binary message of length 1024 bits over a network with probability 0.999
of correctly sending each bit in the message without corruption (independent of
other bits).

Let X be the number of corrupted bits.
What kind of random variable is this and what is E[X|?

Binomial (1024, 0.001)

Therefore [E[X] =np =1024-0.001 = 1.024

14



Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You
have been practicing, so you have a probability of 0.999 of getting each note
correct (independent of the others). If you mess up a single note in the song, you
must start over and play from the beginning. Let X be the number of times you
have to play the song from the start. What kind of random variable is this and what
is E[X]?

16



Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You
have been practicing, so you have a probability of 0.999 of getting each note
correct (independent of the others). If you mess up a single note in the song, you
must start over and play from the beginning. Let X be the number of times you
have to play the song from the start. What kind of random variable is this and what
is E[X]?

Probability that you play whole song without a mistake is 0.999 °°°

Therefore X is a Geometric random variable with parameter p = 0.999 °°°

So its expectation is ngmoo

17



b by Unknown Author
i under CC BY-SA
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Agenda

e Z00 of Discrete RVs

— Uniform Random Variables
— Bernoulli Random Variables
— Binomial Random Variables
— Geometric Random variables

— Examples

— Poisson Distribution 4@
* Approximate Binomial distribution using Poisson distribution
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Preview: Poisson

Model: X is # events that occur in an hour

— Expect to see 3 events per hour (but will be random)
— The expected number of events in t hours, is 3t
— Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
X = # of cars passing through a light in 1 hour

20



Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through a light in 1 hour. E[X] =3

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length 1/n

{4 1/n ‘

This gives us n independent intervals

Assume either zero or one car per interval

p = probability car arrives in a single
interval of length 1/n

21



Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through alightin 1 hour.  Disjoint time intervals are independent.

Know: E[X] = 3

1 hAour
[ \
/n
. A B A B L A B R BL. AN i
0 1ol 11 ol 11 ol of of 11 11 ofl
This gives us n independent intervals What should D be?
Assume either zero or one car per interval Slido.com f3680281
p = probability car arrives in an interval A. 3/n
B. 3n
Model as Bin(n,p) C. 3
D. 3/60 22
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Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through alight in 1 hour.  Disjoint time intervals are independent.

Know: E[X| = A for some given 1 > 0

1 hAour

YT T T S| S

1 I ol 11 ol 11 ol ol ol
ol 1l ol 1 1 ol 11 ol olf ol 1

Discrete version: n intervals, each of length 1/n .
In each interval, there is a car with probability p = 1/n (assume < 1 car can pass by)

Each interval is Bernoulli: X; = 1 if carin i*" interval (0 otherwise) PX;=1)=21/n
n—i
X=X)1Xi X~Bin(n,p) P(X=1i)= (n)( ) (1 ——)
indeed! E|[X|] =pn=41 23



Don’t like discretization  Xis binomial P(X = 1) = Gl

\
(1/n
—h A B A B L A B N B A .J
o T 1 T ol 3 T ol T Mol ol ol v T 1T 51
n /1l /'{n—l
We want now n — o P(X = l)—(_)(—) (1——)
l n n

24



Don’t like discretization

X is binomial P(X = i) = (")( ) (1——)“ :

[

) 1/n

@I

| & | I@I | |

0

1
o | 1 | 0

We want now n — o

roc=0=()G) (-2) = (0-a) (-3)
AR PAV n (n—1i)!nti! n n
\ '1 ’ \ : )\ ' 1
i - - e~ -1
>PX=i)=e"* A ) 25



Siméon Denis Poisson

Poisson Distribution e

* Suppose “events” happen, independently, at an average rate of 1 per
unit time.

* Let X be the actual number of events happening in a given time

unit. Then X is a Poisson r.v. with parameter 4 (denoted X ~ Poi(1))
and has distribution (PMF):

PX=i)=e " -— 1 =0,1,2, ..

Several examples of “Poisson processes’’:

* # of cars passing through a traffic light in 1 hour
» # of requests to web servers in an hour AEETTE

 # of photons hitting a light detector in a given interval | fixed average rate
 # of patients arriving to ER within an hour 26




Probability Mass Function
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This Photo by Unknown Author is license
under CC BY-NC
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Validity of Distribution

__________________________________________________________________________________________________

s this a valid probability mass function?
(How do you show that a pmf is valid?)

28



________________________________________________________

Validity of Distribution

To show that a pmf is valid, need to check that it takes nonnegative values
and that the probabilities sum up to 1.

ZP(Xzi)zZe‘A-fze_A —
L! Ll
=0

- Fact (Taylor series expansion):
i 00 : E
xl
e* = ) —
!
i=0

29



________________________________________________________

i i : 3 Al
Expectation PX=i)=e2 2
Theorem. If X is a Poisson RV with parameter 4 = 0, then

E[X] =7
o (00 /’{l
Proof. E[X] = ZP(X =i)-i= z e~* SRl
i=0 i=0 &

30



________________________________________________________

i i , T .
Expectation PX=i)=e* =
Theorem. If X is a Poisson RV with parameter 4, then

E[X] =2
(00) (0.0) Al (00) Al
Proof E[X] = ZP(X =i)-i= Z e~ .. = Z e
. i! (=D
=0 1=0 =1
© Al—l
= A Z -1,
]
1=1

= 1 (see prior slides!)

00 Ai
=/’lZe_’1-_— —A1-1=A

L!
31



________________________________________________________

Variance

_________________________________________________________________________________________________________________________________________________________

%) %) /11 0 /11
Proof. IE[X2]=ZP(X=L)-i2=ze/1— lz—ze—ﬂ. _ i
0 0 L! 1 (l o 1)'
L= 1= =
> -1 e A]
=AZe_’1 l :/123_/1.__. +1
A AR A
- yu A
= Ze_’l-,—' j+ e’l-f' =A%+ 1
J: J:
= 0 .
- ' ) U — Similar to the previous proof
= E[X] =4 =1 Verify offline.

m) Var(X) = E[X2] - E[X]?=22+1-12 =1 3



Agenda

e Z00 of Discrete RVs

— Uniform Random Variables, Part |
— Bernoulli Random Variables, Part |
— Binomial Random Variables, Part |

— Poisson Distribution
* Approximate Binomial distribution using Poisson distribution

— Applications
— Negative Binomial Random Variables
— Hypergeometric Random Variables

33



Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 = 0 is such
thatforalli =0,1,2,3 ..,

Poisson approximates binomial when:
nis very large, p is very small, and A = np is “moderate”
eg.(n > 20andp < 0.05), (n > 100andp < 0.1)

Formally, Binomial approaches Poisson in the limit as
n — oo (equivalently,p — 0)while holdingnp = A

This Photo by Unknown Author is licensed
under CC BY-NC 34
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Probability Mass Function — Convergence of Binomials

03

025

Bin(10,0.5)

_-:Bin(15,1/3)

~~~-Bin(20,0.25)

(¢]
<l 1 8 5 7 9 11 13 15

as n — o, Binomial(n, p = A/n) - poi(A)

35



From Binomial to Poisson

n — oo
np =4
=— >0 A¥
P(X=k)=(Z)p"(1—p)”-" " n P(X=k)=e_a'ﬁ
ElX] =mnp E[X] = 2

Var(X) = np(1-p) Var(X) = A

36



Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

* Send bit string of lengthn = 10*

e Probability of (independent) bit corruptionisp = 107°
What is probability that message arrives uncorrupted?

Using X ~ Poi(A = np = 10*-107°= 0.01)
LA 0010
P(X=0)=e ik 0.01 = & 0.990049834
Using Y ~ Bin(10%,107°)
P(Y = 0) ~ 0.990049829

37
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Sum of Independent Poisson RVs

Let X~Poi(1,) and Y~Poi(1,) suchthat 1 = 1; + 1,.
Let Z = X + Y. Whatkind of random variableis Z ?
Aka what is the “distribution’ of Z ?

Intuition first:

X is measuring number of (type 1) events that happen in, say, an
hour if they happen at an average rate of 4, per hour.

* Y is measuring number of (type 2) events that happen in, say, an
hour if they happen at an average rate of 1, per hour.

7 is measuring total number of events of both types that happen in,
say, an hour, if type 1 and type 2 events occur independently. .



Sum of Independent Poisson RVs
 Theorem. Let X~Poi(1,) and Y ~Poi(1,) such that 1 = 1; + 4,.
letZ=X+Y. Forallz=0123..,

More generally, let X; ~Poi(4,), -:-, X,,~Poi(4,,) such that 4 = Z;1;.
Let Z = ZiXi
PZ=z)=e*.2

Z!

40



_____________________________________________________________________________________________________________________________________________________________________

' Theorem. Let X~Poi(1,) and Y ~Poi(1,) such that 1 = 1; + 4,.
LetZ=X+Y.Forallz=0,1,23 ..,

42



Proof

P(Z=2)=3PX=jY=2z—-})

=3 PX=))P(Y=2—)) =5, e

_ -2 jaz-]

— ¢~M z(zjzzo .j!Z—j!./ll/lz )
Z! - A\ 1

_ 2 vz Cajaz—j\ t

- ¢ (ijoj!z—j! M4, )z!

=e A (U +2,)7 ~=eh.}2.—

Z! - VA

Law of total probability

by AL
IR - Independence
j! z— ]!
Binomial
Theorem

43



Poisson Random Variables

Definition. A Poisson random variable X with parameter 1 = 0 is such
thatforalli =0,1,2,3 ..,

General principle:

* Events happen at an averagerate * Poisson approximates Binomial when n is large,
of A1 per time unit p is small, and np is moderate

* Number of events happeningata <+ Sum of independent Poisson is still a Poisson
time unit X is distributed
according to Poi(1)
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