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Motivation for “Named” Random Variables

Random Variables that show up all over the place. 
– Easily solve a problem by recognizing it’s a special case of one of 

these random variables.

Each RV introduced today will show:
– A general situation it models
– Its name and parameters
– Its PMF, Expectation, and Variance
– Example scenarios you can use it
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Agenda

• Zoo of Discrete RVs
– Uniform Random Variables – last time
– Bernoulli Random Variables – last time
– Binomial Random Variables – last time
– Geometric Random Variables
– Poisson Random Variables
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Welcome to the Zoo! (Preview) 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)
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𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝! 1 − 𝑝 "#!

𝔼 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝$

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
%
"

&#%
'#"
&
'

𝔼 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁$(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝" 1 − 𝑝 '#"

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#(𝑝

𝔼 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝$



Discrete Uniform Random Variables

A discrete random variable 𝑋 equally likely to take any (integer) value 
between integers 𝑎 and 𝑏 (inclusive), is uniform.

Notation: 𝑋 ∼ Unif(𝑎, 𝑏)
Range: Ω! = 𝑎, 𝑎 + 1,… , 𝑏

PMF: P 𝑋 = 𝑖 = "
# $%&"

Expectation: 𝔼 𝑋 = %&#
'

Variance: Var(𝑋) = (#$%)(# $%&')
"'
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Example: value shown on one 
roll of a fair die is Unif(1,6):

•  𝑃(𝑋 = 𝑖) = 1/6
• 	𝔼 𝑋 = 7/2
•  Var 𝑋 = 35/12



Bernoulli Random Variables

A random variable 𝑋 that takes value 1 (“Success”) with probability 𝑝, 
and 0 (“Failure”) otherwise. 𝑋 is called a Bernoulli random variable.
Notation: 𝑋 ∼ Ber(𝑝)
Range: Ω! = 0, 1
PMF: 𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝
Expectation: 𝔼 𝑋 = 𝑝 Note: 𝔼 𝑋' = 𝑝
Variance: Var 𝑋 = 𝔼 𝑋' − 𝔼 𝑋 ' = 𝑝 − 𝑝' = 𝑝(1 − 𝑝)
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Examples:
• Coin flip
• Randomly guessing on a MC test question
• A server in a cluster fails
• Whether or not a share of a particular stock pays off or not
• Any indicator r.v.



Binomial Random Variables

A discrete random variable 𝑋 = ∑*+", 𝑌* where each 𝑌* ∼ Ber 𝑝 .
Counts number of successes in 𝑛 independent trials, each with 
probability 𝑝 of success.                                                     
𝑋 is a Binomial random variable
Notation: 𝑋 ∼ Bin(𝑛, 𝑝)
Range: Ω! = 0, 1, 2, … , 𝑛
PMF: 𝑃 𝑋 = 𝑘 = ,

- 𝑝
- 1 − 𝑝 ,$-

Expectation: 𝔼 𝑋 = 𝑛𝑝
Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)
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Examples:
• # of heads in 𝑛 indep coin flips
• # of 1s in a randomly generated n 

bit string
• # of servers that fail in a cluster of 

𝑛	computers
• # of bit errors in file written to disk
• # of elements in a particular 

bucket of a large hash table
• # of 𝑛 different stocks that “pay 

off”



Mean, Variance of the Binomial

If 𝑌!, 𝑌", … , 𝑌# ∼ Ber(𝑝) and independent (i.i.d.), then
𝑋 = ∑$%!

# 𝑌$ ,    𝑋 ∼ Bin(𝑛, 𝑝)

Claim 𝔼 𝑋 = 𝑛𝑝

𝔼 𝑋 = 𝔼 2
$%!

#

𝑌$ =2
$%!

#

𝔼[𝑌$] = 𝑛𝔼 𝑌! = 𝑛𝑝

Claim Var 𝑋 = 𝑛𝑝 1 − 𝑝

Var 𝑋 = Var 2
$%!

#

𝑌$ =2
$%!

#

Var 𝑌$ = 𝑛Var 𝑌! = 𝑛𝑝(1 − 𝑝)
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“i.i.d.” is a commonly used phrase.
It means “independent & identically distributed”



Agenda

• Zoo of Discrete RVs
– Recap
– Geometric Random Variables
– Poisson Random Variables
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Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌* ∼ Ber 𝑝 before seeing the first success. 
𝑋 is called a Geometric random variable with parameter 𝑝. 

Notation: 𝑋 ∼ Geo(𝑝)
Range: 
PMF: 
Expectation:
Variance:
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Examples:
•  # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Geometric Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌* ∼ Ber 𝑝 before seeing the first success.
𝑋 is called a Geometric random variable with parameter 𝑝. 
Notation: 𝑋 ∼ Geo(𝑝)
Range: Ω! = 1, 2, 3, … .
PMF: 𝑃 𝑋 = 𝑘 = 1 − 𝑝 -$"𝑝

Expectation: 𝔼 𝑋 = "
0

Variance: Var 𝑋 = "$0
0!
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Examples:
•  # of coin flips until first head
• # of random guesses on MC 

questions until you get one 
right

• # of random guesses at a 
password until you hit it

• # hash trials until a miner 
successfully mines a Bitcoin



Agenda

• Zoo of Discrete RVs 
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random Variables
– More examples
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). 
Let 𝑋 be the number of corrupted bits. 
What kind of random variable is this and what is 𝔼[𝑋]? 
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). 
Let 𝑋 be the number of corrupted bits. 
What kind of random variable is this and what is 𝔼[𝑋]? 

Binomial (1024, 0.001)

Therefore 𝔼 𝑋 = 𝑛𝑝 = 1024 ⋅ 0.001 = 1.024
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Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let 𝑋 be the number of times you 
have to play the song from the start. What kind of random variable is this and what 
is 𝔼[𝑋]?
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Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let 𝑋 be the number of times you 
have to play the song from the start. What kind of random variable is this and what 
is 𝔼[𝑋]?

Probability that you play whole song without a mistake is 0.999 1000

Therefore 𝑋 is a Geometric random variable with parameter p = 0.999 1000 

So its expectation is   !
0.999 1000
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• Zoo of Discrete RVs
– Uniform Random Variables
– Bernoulli Random Variables
– Binomial Random Variables
– Geometric Random variables

– Examples
– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution
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Preview: Poisson

Model: 𝑋 is # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in 𝑡 hours, is 3𝑡
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

𝑋 = # of cars passing through a light in 1 hour

20



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour. 

21

𝔼[𝑋] = 3

1/𝑛

Assume:   Occurrence of events on disjoint time intervals is independent

Divide hour into 𝑛 intervals of length 1/𝑛Approximation idea:

This gives us 𝑛 independent intervals

Assume either zero or one car per interval

𝑝 =	probability car arrives in a single
 interval of length 1/𝑛



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 3

1 hour

10 0 1 10 0 0 0 1 1 0

1/𝑛

This gives us 𝑛 independent intervals

Assume either zero or one car per interval

𝑝 =	probability car arrives in an interval

Model as  Bin(𝑛, 𝑝)

What should 𝑝 be?
Slido.com/3680281 
A.  3/𝑛
B.  3𝑛 
C.  3
D.  3/60

https://www.slido.com/


Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 𝜆 for some given 𝜆 > 0 

1 hour

Discrete version: 𝑛 intervals, each of length 1/𝑛 . 
In each interval, there is a car with probability 𝑝 = 𝜆/𝑛 (assume ≤ 1 car can pass by)

Each interval is Bernoulli: 𝑋H = 1 if car in 𝑖th interval (0 otherwise). 𝑃(𝑋H = 1) = 𝜆	/𝑛

𝑋 = ∑*+", 𝑋*  

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑋~	Bin(𝑛, 𝑝)   𝑃 𝑋 = 𝑖 = ,
*

1
,

*
1 − 1

,

,$*

indeed! 𝔼 𝑋 = 𝑝𝑛 = 𝜆



Don’t like discretization
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We want now 𝑛 → ∞

𝑋 is binomial 𝑃 𝑋 = 𝑖 = "
#

$
"

#
1 − $

"

"%#

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

*

1 −
𝜆
𝑛

,$*



Don’t like discretization
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We want now 𝑛 → ∞

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

*

1 −
𝜆
𝑛

,$*

=
𝑛!

𝑛 − 𝑖 ! 𝑛*
𝜆*

𝑖!
1 −

𝜆
𝑛

,

1 −
𝜆
𝑛

$*

	

𝑋 is binomial 𝑃 𝑋 = 𝑖 = "
#

$
"

#
1 − $

"

"%#

→ 1 → 1→ 𝑒IJ
→ 𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "

&

#!
	

10 0 1 10 0 0 0 1 1 0

1/𝑛



Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 𝜆 per 
unit time.

• Let 𝑋 be the actual number of events happening in a given time 
unit. Then 𝑋 is a Poisson r.v. with parameter 𝜆 (denoted 𝑋 ~ Poi(𝜆)) 
and has distribution (PMF):

26

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate

𝑖 = 0, 1, 2, …



Probability Mass Function 
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0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

𝜆 = 2 

𝜆 = 5 

𝜆 = 10 

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	

This Photo by Unknown Author is licensed 
under CC BY-NC

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

Is this a valid probability mass function?  
(How do you show that a pmf is valid?)
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𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	 𝑖 = 0, 1, 2, …



Validity of Distribution

To show that a pmf is valid, need to check that it takes nonnegative values
and that the probabilities sum up to 1.
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Q
*+8

9

𝑃 𝑋 = 𝑖 =Q
*+8

9

𝑒$1 ⋅
𝜆*

𝑖!
= 𝑒$1 Q

*+8

9
𝜆*

𝑖!

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	

Fact (Taylor series expansion):

𝑒: =Q
*+8

9
𝑥*

𝑖!



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆 ≥ 0, then
𝔼 𝑋 =	?

Proof.

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	

𝔼[𝑋] = Q
*+8

9

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	Q
*+8

9

𝑒$1 ⋅
𝜆*

𝑖!
⋅ 𝑖



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼 𝑋 = 𝜆

𝔼[𝑋] = Q
*+8

9

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	Q
*+8

9

𝑒$1 ⋅
𝜆*

𝑖!
⋅ 𝑖 = Q

*+"

9

𝑒$1 ⋅
𝜆*

(𝑖 − 1)!

= 𝜆	Q
*+"

9

𝑒$1 ⋅
𝜆*$"

(𝑖 − 1)!

= 𝜆	Q
*+8

9

𝑒$1 ⋅
𝜆*

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋K =E
HLM

N

𝑃 𝑋 = 𝑖 ⋅ 𝑖K =E
HLM

N

𝑒IJ ⋅
𝜆H

𝑖!
⋅ 𝑖K =E

HLO

N

𝑒IJ ⋅
𝜆H

(𝑖 − 1)!
𝑖

= 𝜆E
HLO

N

𝑒IJ ⋅
𝜆HIO

(𝑖 − 1)!
⋅ 𝑖 = 𝜆E

PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 E
PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
⋅ 𝑗 +E

PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
= 𝜆K + 𝜆

= 𝔼[𝑋] = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼[𝑋'] − 𝔼[𝑋]'= 𝜆' + 𝜆 − 𝜆' = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
&

#!
	



Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I
– Bernoulli Random Variables, Part I
– Binomial Random Variables, Part I

– Poisson Distribution
• Approximate Binomial distribution using Poisson distribution

– Applications
– Negative Binomial Random Variables
– Hypergeometric Random Variables
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Poisson Random Variables

34

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒$1 ⋅ 1
"

*!
	

This Photo by Unknown Author is licensed 
under CC BY-NC

Poisson approximates binomial when:
    𝑛 is very large, 𝑝 is very small, and   𝜆 = 𝑛𝑝	is “moderate” 
      e.g. (𝑛	 > 	20	and 𝑝	 < 	0.05 ),  ( 𝑛	 > 	100	and 𝑝	 < 	0.1)

Formally, Binomial approaches Poisson in the limit as 
𝑛	 → 	∞	(equivalently, 𝑝	 → 	0) while holding 𝑛𝑝	 = 	 𝜆

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Probability Mass Function – Convergence of Binomials
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𝜆 = 5 
𝑝 = Q

R
 

𝑛 = 10,15,20

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 1 3 5 7 9 11 13 15

Bin(10,0.5)

Bin(15,1/3)

Bin(20,0.25)

Poi(5)

𝑎𝑠	𝑛 → ∞,   Binomial(n, 𝑝 = 	𝜆/𝑛) → 𝑝𝑜𝑖(𝜆)



From Binomial to Poisson
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𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝T 1 − 𝑝 RIT

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Poi(𝜆)

𝑃 𝑋 = 𝑘 = 𝑒$1 ⋅
𝜆-

𝑘!

𝐸 𝑋 = 𝜆

Var 𝑋 = 𝜆

𝑛 → ∞
𝑛𝑝 = 𝜆

𝑝 =
𝜆
𝑛
→ 0



Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length 𝑛 = 10%
• Probability of (independent) bit corruption is 𝑝 = 10!&
What is probability that message arrives uncorrupted?

Using 𝑋 ~ Poi(𝜆 = 𝑛𝑝 = 10% ⋅ 10!& = 0.01)

Using 𝑌 ~ Bin(10%, 10!&)
𝑃(𝑌 = 0) ≈ 0.990049829

37

𝑃 𝑋 = 0 = 𝑒$1 ⋅
𝜆8

0!
= 𝑒$8.8" ⋅

0.018

0!
≈ 0.990049834
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http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/


Sum of Independent Poisson RVs 

39

Let 𝑋~Poi(𝜆") and 𝑌~Poi(𝜆')	such that 𝜆 = 𝜆" + 𝜆'. 
Let 𝑍 = 𝑋 + 𝑌.    What kind of random variable is 𝑍 ?
Aka what is the “distribution” of 𝑍 ?

Intuition first: 
• 𝑋 is measuring number of (type 1) events that happen in, say, an 

hour if they happen at an average rate of 𝜆" per hour.
• 𝑌 is measuring number of (type 2) events that happen in, say, an 

hour if they happen at an average rate of 𝜆' per hour.
• 𝑍 is measuring total number of events of both types that happen in, 

say, an hour, if type 1 and type 2 events occur independently.
•  



Sum of Independent Poisson RVs 

40

Theorem. Let 𝑋~Poi(𝜆") and 𝑌~Poi(𝜆')	such that 𝜆 = 𝜆" + 𝜆'. 
Let 𝑍 = 𝑋 + 𝑌.    For all 𝑧 = 0,1,2,3…,

 𝑃 𝑍 = 𝑧 = 𝑒$1 ⋅ 1
#

=!
	

More generally, let 𝑋"~Poi 𝜆" , ⋯ , 𝑋,~Poi(𝜆,) such that 𝜆 = Σ*𝜆*. 
Let 𝑍 = Σ*𝑋*  

 𝑃 𝑍 = 𝑧 = 𝑒$1 ⋅ 1
#

=!
	



Proof

42

𝑃 𝑍 = 𝑧 = Σ>+8= 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗 Law of total probability

Theorem. Let 𝑋~Poi(𝜆") and 𝑌~Poi(𝜆')	such that 𝜆 = 𝜆" + 𝜆'. 
Let 𝑍 = 𝑋 + 𝑌. For all 𝑧 = 0,1,2,3…, 

 𝑃 𝑍 = 𝑧 = 𝑒$1 ⋅ 1
#

=!
	



Proof

43

𝑃 𝑍 = 𝑧 = Σ>+8= 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗

= Σ>+8= 𝑃 𝑋 = 𝑗)	𝑃(𝑌 = 𝑧 − 𝑗 = Σ>+8= 	 𝑒$1$ ⋅
𝜆"
>

𝑗!
⋅ 𝑒$1! ⋅

𝜆'
=$>

𝑧 − 𝑗!

= 𝑒$1$$1! 	Σ>+8= 	 ⋅
1

𝑗! 𝑧 − 𝑗!
⋅ 𝜆"

>𝜆'
=$>

= 𝑒$1 	Σ>+8= 𝑧!
𝑗! 𝑧 − 𝑗!

⋅ 𝜆"
>𝜆'

=$> 1
𝑧!

= 𝑒$1 ⋅ 𝜆" + 𝜆' = ⋅ "
=!
= 𝑒$1 ⋅ 𝜆= ⋅ "

=!

Law of total probability

Independence

Binomial 
Theorem
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General principle: 
• Events happen at an average rate 

of 𝜆 per time unit 
• Number of events happening at a 

time unit 𝑋 is distributed 
according to Poi(𝜆) 

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒$1 ⋅ 1
"

*!
	

• Poisson approximates Binomial when 𝑛 is large, 
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables


