CSE 312

Foundations of Computing II

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna's office hours on Saturday (tmw) from 2-3pm

Agenda

- More on Poisson random variables
- An Application: Bloom Filters!

review: Poisson

Model: X is # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent

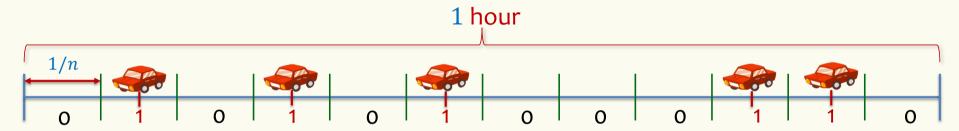
Example - Modelling car arrivals at an intersection

X =# of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. Disjoint time intervals are independent.

Know: $\mathbb{E}[X] = \lambda$ for some given $\lambda > 0$



Discrete version: n intervals, each of length 1/n.

In each interval, there is a car with probability $p = \lambda/n$ (assume ≤ 1 car can pass by)

Each interval is Bernoulli: $X_i = 1$ if car in i^{th} interval (0 otherwise). $P(X_i = 1) = \lambda / n$

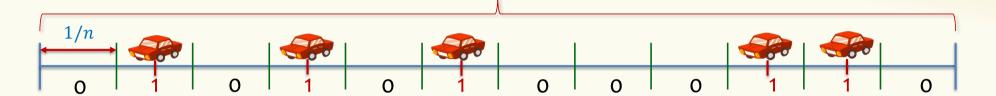
$$X = \sum_{i=1}^{n} X_i \qquad X \sim \text{Bin}(n, p) \qquad P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

indeed! $\mathbb{E}[X] = pn = \lambda$

4

Don't like discretization

X is binomial $P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$



We want now $n \to \infty$

$$P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i} = \frac{n!}{(n-i)! \, n^{i}} \frac{\lambda^{i}}{i!} \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{\lambda}{n}\right)^{-i}$$

$$\to P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

5

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \text{Poi}(\lambda)$) and has distribution (PMF):

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
 $i = 0, 1, 2, ...$

Several examples of "Poisson processes":

- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

Assume fixed average rate

$$E(X) = \lambda$$

 $Var(X) = \lambda$

Poisson Random Variables

Definition. A **Poisson random variable** X with parameter $\lambda \geq 0$ is such

that for all i = 0,1,2,3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Poisson approximates binomial when:

n is very large, p is very small, and $\lambda = np$ is "moderate" e.g. (n > 20 and p < 0.05), (n > 100 and p < 0.1)

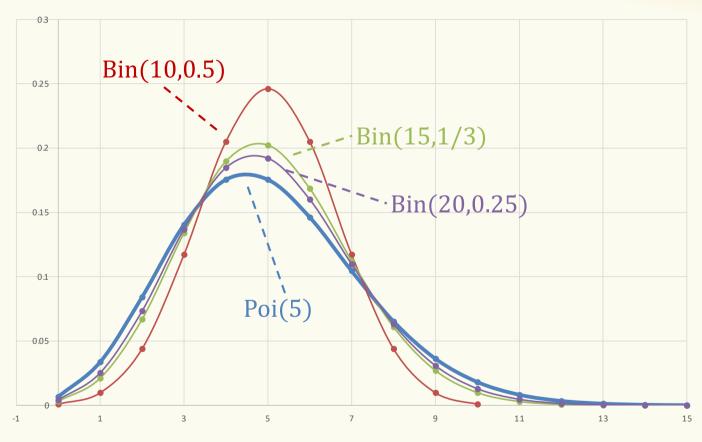
Formally, Binomial approaches Poisson in the limit as $n \to \infty$ (equivalently, $p \to 0$) while holding $np = \lambda$

Probability Mass Function – Convergence of Binomials

$$\lambda = 5$$

$$p = \frac{5}{n}$$

$$n = 10,15,20$$



as
$$n \to \infty$$
, Binomial(n, $p = \lambda/n$) $\to poi(\lambda)$

Sum of Independent Poisson RVs

Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. What kind of random variable is Z? Aka what is the "distribution" of Z?

= 6(x=x)6(x=x) = 6(x=x)6(x=x) = 6(x=x)6(x=x)

Intuition first:

- X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_1 per hour.
- Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_2 per hour.
- Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let
$$Z = X + Y$$
. For all $z = 0,1,2,3...$,

$$P(Z=z)=e^{-\lambda}\cdot\frac{\lambda^z}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \Sigma_i \lambda_i$.

Let
$$Z = \Sigma_i X_i$$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let Z = X + Y. For all z = 0,1,2,3...,

$$P(Z=z)=e^{-\lambda}\cdot\frac{\lambda^{z}}{z!}\qquad z=0,1,2,...$$

Proof
$$P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$$
Law of total probability

$$(\alpha+b)^2 = \sum_{j=0}^{2} {2 \choose j} \alpha^j b^{2-j}$$

Proof

$$P(Z=z) = \sum_{j=0}^{z} P(X=j, Y=z-j)$$

Law of total probability

$$= \Sigma_{j=0}^{z} P(X=j) \ P(Y=z-j) = \Sigma_{j=0}^{z} \ e^{-\lambda_1} \cdot \frac{\lambda_1^{J}}{j!} \cdot e^{-\lambda_2} \cdot \frac{\lambda_2^{z-J}}{z-j!} \quad \text{Independence}$$

$$= e^{-\lambda_1 - \lambda_2} \left(\sum_{j=0}^{z} \cdot \frac{1}{j! \, z - j!} \cdot \lambda_1^j \lambda_2^{z-j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{z} \frac{z!}{j! z - j!} \cdot \lambda_1^j \lambda_2^{z-j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^z \cdot \frac{1}{z!}$$

Binomial Theorem

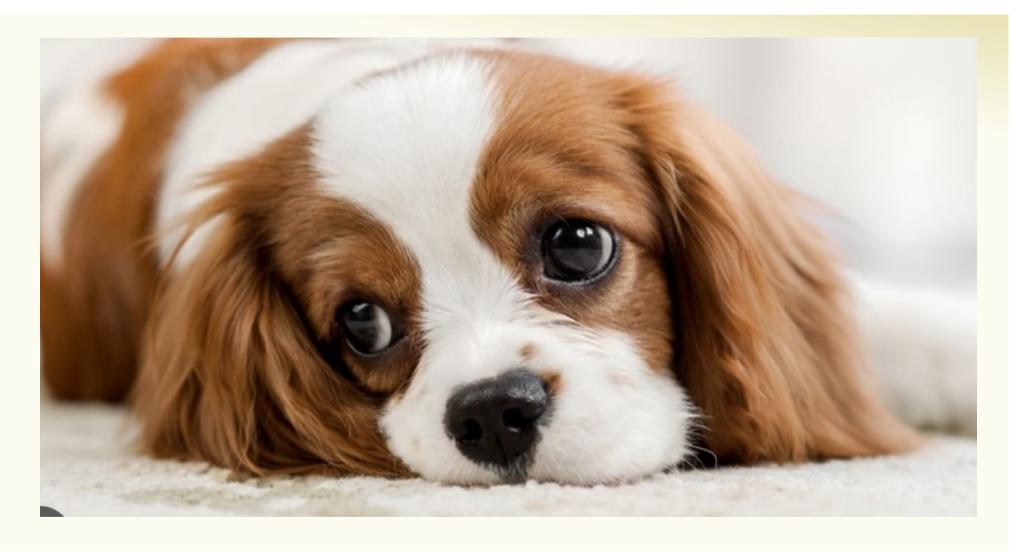
Poisson Random Variables

Definition. A **Poisson random variable** X with parameter $\lambda \geq 0$ is such that for all i = 0,1,2,3...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $Poi(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson



Agenda

- Wrap up Poisson random variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

```
Example. U = \text{set of } 128 \text{ bit strings} |U| \approx 2^{128} S = \text{subset of strings of interest} |S| \approx 1000
```

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

$$S = \{0, 2, \dots, K\}$$

0	1	2		K		
1	0	1	0	1	 0	0

Membership test: To check. $x \in S$ just check whether A[x] = 1.

→ constant time! 👍 😀

Storage: Require storing 2¹²⁸ bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent S as a list with |S| entries.

$$S = \{0,2,\ldots,K\}$$

Storage: Grows with |S| only

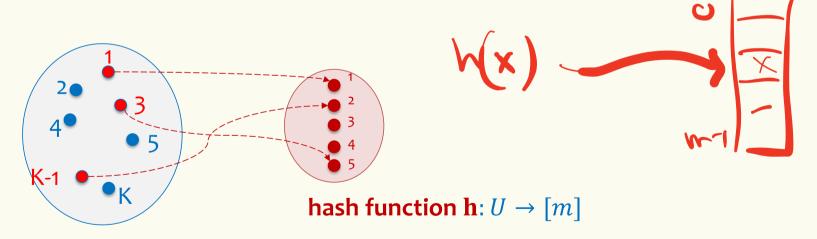
Membership test: Check $x \in S$ requires time linear in |S| (Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

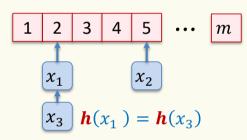
Storage: *m* elements (size of array)



Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

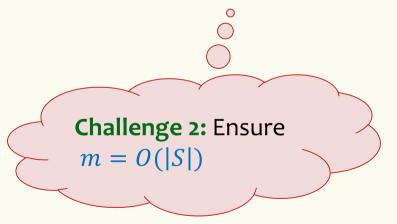


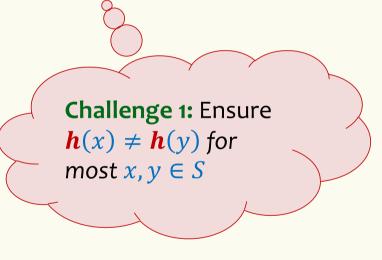
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)





Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

X: # elts hat nap to locate 1
intable

51= m ells toblesie=m

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored, \sim i.e., $m = \Omega(|S|)$

$$B(m, m)$$
 $E(x)=1$

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters to the rescue

(Named after Burton Howard Bloom)

Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: Ridiculously space efficient
- · Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False → definitely not in S
- True \rightarrow **possibly** in *S*

[i.e. we could have false positives]

Bloom Filters - Why Accept False Positives? When expect most quents

- Speed both add and contains very very fast.
- Space requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- Fallback mechanism can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- Internet routers often use Bloom filters to track blocked IP addresses.
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- And on and on...

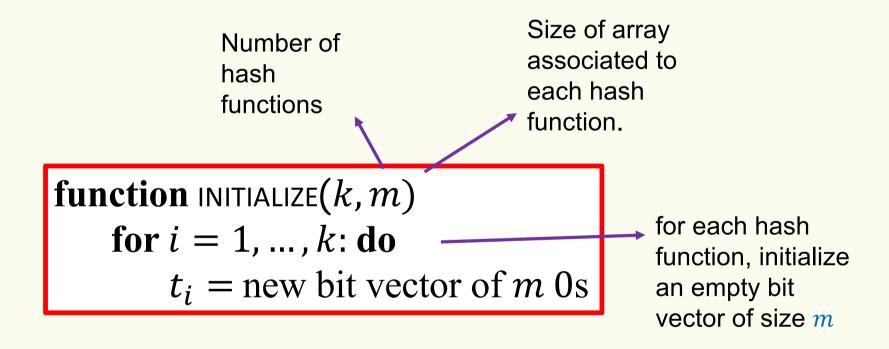
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows t_1, \dots, t_k , each of size m
- Think of each row as an m-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k : U \to [m]$

Bloom Filters - Initialization



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

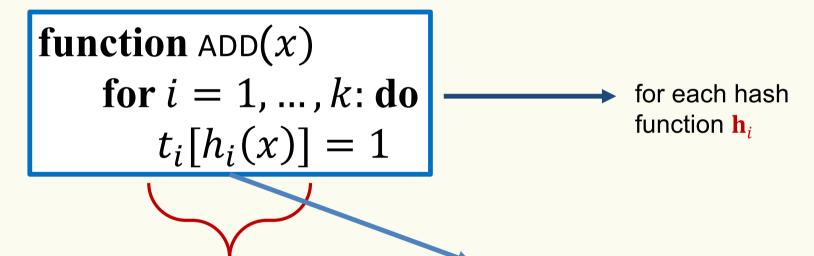
function INITIALIZE(k, m)

for i = 1, ..., k: **do**

 $t_i = \text{new bit vector of } m \text{ 0s}$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom Filters: Add



Index into *i*-th bit-vector, at index produced by hash function and set to 1

 $\mathbf{h}_i(x) \rightarrow \text{result of hash}$ function \mathbf{h}_i on x

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for i = 1, ..., k: do

$$t_i[h_i(x)] = 1$$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t_3	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t_3	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x)

return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$,

Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True True True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t_2	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("thisisavirus.com") function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") $\rightarrow 2$ True True True h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$ 3 Index 0 4 Since all conditions satisfied, returns True (correctly) 0 U ι1 t_2 0 0 0 00 0 t_3 0 0

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for
$$i = 1, ..., k$$
: **do**

$$t_i[h_i(x)] = 1$$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t_2	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$ h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t_3	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function
$$ADD(x)$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") \rightarrow 4

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") \rightarrow 2 h_2 ("verynormalsite.com") \rightarrow 0

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t_2	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True True True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

 h_2 ("verynormalsite.com") $\rightarrow 0$

 h_3 ("verynormalsite.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t_2	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com") function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ h_1 ("verynormalsite.com") $\rightarrow 2$ True True True h_2 ("verynormalsite.com") $\rightarrow 0$ h_3 ("verynormalsite.com") $\rightarrow 4$ 3 Index 0 4 Since all conditions satisfied, returns True (incorrectly) 0 U ι1 t_2 00 0 t_3 0 0 0

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m)for i = 1, ..., k: do $t_i = \text{new bit vector of } m \text{ 0s}$

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

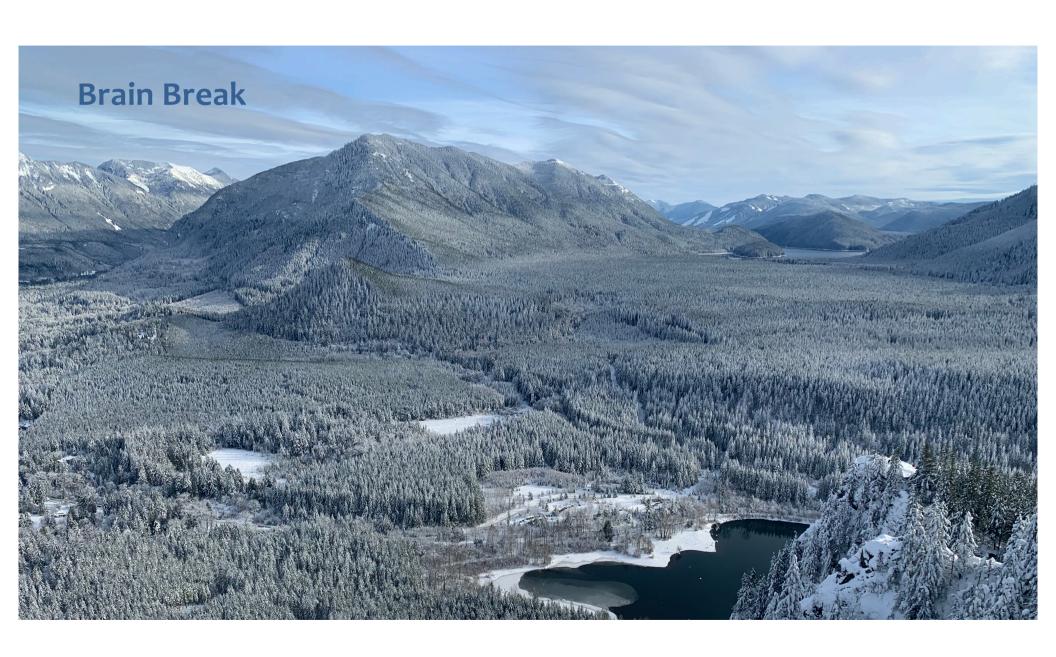
• Check if $x \in S$

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

What you can't do with Bloom filters

- There is no delete operation
 - Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you can do makes them very effective!



Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

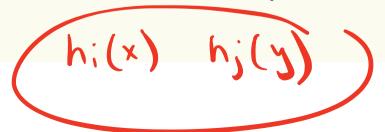
Analysis: False positive probability

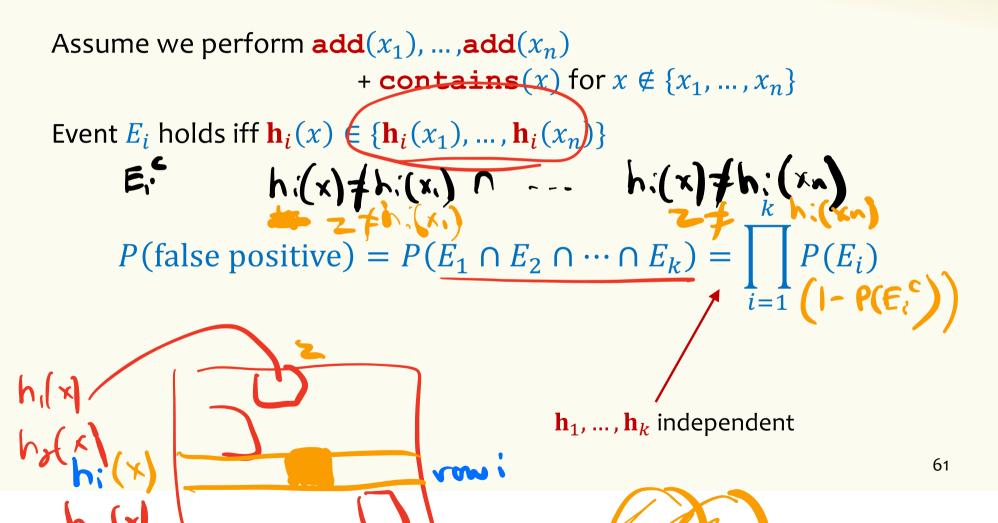
Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis:

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other





E;

/x)/df/x).//

False positive probability – Events

Event
$$E_i$$
 holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c \mid \mathbf{h}_i(x) = z)$$
LTP

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$
Independence of values of \mathbf{h}_i on different inputs
$$= \prod_{j=1}^n P(\mathbf{h}_i(x_j) \neq z)$$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, \dots, \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$

Independence of values of h_i on different inputs

$$= P(\mathbf{h}_i(x_1) \neq z, \dots, \mathbf{h}_i(x_n) \neq z)$$

$$= \prod_{j=1}^{n} P(\mathbf{h}_{i}(x_{j}) \neq z)$$

Outputs of h_i uniformly spread

$$= \prod_{j=1}^{n} \left(1 - \frac{1}{m} \right) = \left(1 - \frac{1}{m} \right)^{n}$$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

FPR =
$$\prod_{i=1}^{k} (1 - P(E_i^c)) = (1 - (1 - \frac{1}{m})^n)^k$$

False Positivity Rate_ – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$

FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Hash Table

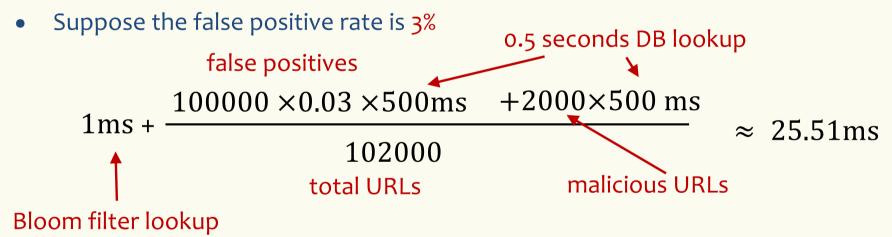
(optimistic) $5,000,000 \times 40B = 200MB$

Bloom Filter

 $2,500,000 \times 30 = 75,000,000 \text{ bits}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.



Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!