CSE 312
Foundations of Computing II

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna's office hours on Saturday (tmw) from 2-3pm
(not 3-4pm)

Agenda

- More on Poisson random variables
- An Application: Bloom Filters!

preview: Poisson

Model: X is \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=$ \# of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent.
Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& \text { indeed! } \mathbb{E}[X]=p n=\lambda
\end{aligned}
$$

Don't like discretization

$$
X \text { is binomial } P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!} \\
& \rightarrow P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda($ denoted $X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \quad i=0,1,2, \ldots
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour
- \# of photons hitting a light detector in a given interval
- \# of patients arriving to ER within an hour

Assume fixed average rate

$$
\begin{gathered}
E(X)=\lambda \\
\operatorname{Var}(X)=\lambda
\end{gathered}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates binomial when: n is very large, p is very small, and $\lambda=n p$ is "moderate" e.g. $(n>20$ and $p<0.05)$, $(n>100$ and $p<0.1)$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

$$
\begin{aligned}
& \lambda=5 \\
& p=\frac{5}{n} \\
& n=10,15,20
\end{aligned}
$$

Sum of Independent Poisson RVs

Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. What kind of random variable is Z ?
Aka what is the "distribution" of Z ?

Intuition first:

- X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_{1} per hour.
- Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_{2} per hour.
- Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$.
Leet $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!} \quad \boldsymbol{\varepsilon}=\boldsymbol{0}, \mathbf{1}, \mathbf{2}, \ldots
$$

Proof

$$
\begin{aligned}
& P(Z=Z= \\
& \text { indep }=\sum_{j=0}^{Z} P(X=j, Y=z-j) \\
& =\sum_{j=-\infty}
\end{aligned}
$$

Law of total probability

$$
(a+b)^{2}=\sum_{j=0}^{2}\binom{2}{j} a^{j} b^{2-j}
$$

Proof

$$
\begin{array}{ll}
P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) & \text { Law of total probability } \\
=\sum_{j=0}^{Z} P(X=j) P(Y=z-j)=\sum_{j=0}^{Z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
=e^{-\lambda_{1}-\lambda_{2}}\left(\sum_{j=0}^{Z} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) & \frac{z^{2!}}{2!} \\
=e^{-\lambda}\left(\sum_{j=0}^{Z} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} & \text { Binomial } \\
=e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} & \text { Theorem }
\end{array}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

Agenda

- Wrap up Poisson random variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings $\quad|U| \approx 2^{128}$
$S=$ subset of strings of interest

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$
\mathrm{A}[x]= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

$S=\{0,2, \ldots, K\}$

1	0	1	2	\ldots	K	\ldots		
1	0	1	0	1	\ldots	0	0	

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h}
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

hash function $\mathbf{h}: U \rightarrow[m]$

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$,
i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h}
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

$$
\begin{aligned}
& \text { Challenge 1: Ensure } \\
& \boldsymbol{h}(x) \neq \boldsymbol{h}(y) \text { for } \\
& \text { most } x, y \in S
\end{aligned}
$$

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

X: \#eltstat nap to location 1 Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
i.e., $m=\Omega(|S|)$
ells tablesia $=m$
$B\left(m, \frac{1}{m}\right)$
$E(x)=1$
In some cases, $|S|$ is huge, or not known a-priori ...

Bloom Filters

 to the rescue(Named after Burton Howard Bloom)

Bloom Filters - Main points

- Probabilistic data structure.
- Close cousins of hash tables.
- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow definitely not in S
- True \rightarrow possibly in S
[i.e. we could have false positives]

Bloom Filters - Why Accept False Positives?

 when axpect most queries F- Speed - both add and contains very very fast.
- Space - requires a miniscule amount of space relative to storing all the actual items that have been added.
- Often just 8 bits per inserted item!
- Fallback mechanism - can distinguish false positives from true positives with extra cost
- Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters - More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- Internet routers often use Bloom filters to track blocked IP addresses.
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- And on and on...

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{INITIALIZE}(k, m)\) for \(i=1, \ldots, k\) : do \(t_{i}=\) new bit vector of \(m 0 \mathrm{~s}\)```						
no	Index $\rightarrow$	0	1	2	3	4
	$\mathrm{t}_{1}$	0	0	0	0	0
$h_{2}$	$\mathrm{t}_{2}$	0	0	0	0	0
${ }^{\text {n }}$	$\mathrm{t}_{3}$	0	0	0	0	0

## Bloom Filters: Add



## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") $h_{1}$ ("thisisavirus.com") $\rightarrow 2$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	0	0	0
$t_{2}$	0	0	0	0	0
$t_{3}$	0	0	0	0	0

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

add("thisisavirus.com")
$h_{1}$ ("thisisavirus.com") $\rightarrow 2$
$h_{2}$ ("thisisavirus.com") $\rightarrow 1$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	0	0	0	0
$t_{3}$	0	0	0	0	0

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") $h_{1}$ ("thisisavirus.com") $\rightarrow 2$ $h_{2}$ ("thisisavirus.com") $\rightarrow 1$
$h_{3}$ ("thisisavirus.com") $\rightarrow 4$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	0

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") $h_{1}$ ("thisisavirus.com") $\rightarrow 2$ $h_{2}$ ("thisisavirus.com") $\rightarrow 1$
$h_{3}$ ("thisisavirus.com") $\rightarrow 4$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: Contains

function $\operatorname{contains}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector $t_{i}$ for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS (x)
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{contains}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")				
True	True		$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \end{aligned}$				
		Index \rightarrow	0	1	2	3	4
		t_{1}	0	0	1	0	0
		t_{2}	0	1	0	0	0
		t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINs}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")				
True	True	True		$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \\ & h_{3}(\text { "thisisavirus.com") } \rightarrow 4 \end{aligned}$			
		Index $\rightarrow$	0	1	2	3	4
		$t_{1}$	0	0	1	0	0
		$t_{2}$	0	1	0	0	0
		$t_{3}$	0	0	0	0	1

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINS}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")			
True True	True					
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly)						
						0
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(x)$

$$
\begin{gathered}
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallynotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{aligned}
& \text { function } \operatorname{ADD}(x) \\
& \text { for } i=1, \ldots, k \text { : do } \\
& t_{i}\left[h_{i}(x)\right]=1
\end{aligned}
$$

add("totallynotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$ h_{2} ("totallynotsuspicious.com") $\rightarrow 0$ h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$ h_{2} ("totallynotsuspicious.com") $\rightarrow 0$ h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
``` contains("verynormalsite.com")
\(h_{1}\) ("verynormalsite.com") \(\rightarrow 2\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Index \\
\(\rightarrow\)
\end{tabular} & 0 & 1 & 2 & 3 & 4 \\
\hline\(t_{1}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(t_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline\(t_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { function } \operatorname{contains}(x) \\
& \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{aligned}
\]} & \multicolumn{5}{|l|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{5}{*}{True} & \multirow[t]{5}{*}{True} & \multicolumn{5}{|c|}{\begin{tabular}{l}
\(h_{1}\) ("verynormalsite.com") \(\rightarrow 2\) \\
\(h_{2}\) ("verynormalsite.com") \(\rightarrow 0\)
\end{tabular}} \\
\hline & & 0 & 1 & 2 & 3 & 4 \\
\hline & & 0 & 1 & 1 & 0 & 0 \\
\hline & & 1 & 1 & 0 & 0 & 0 \\
\hline & & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { function } \operatorname{contains}(x) \\
& \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{aligned}
\]} & \multicolumn{5}{|c|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{5}{*}{True} & \multirow[t]{5}{*}{True} & \multicolumn{2}{|c|}{True} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& h_{1}(\text { ("verynormalsite.com") } \rightarrow 2 \\
& h_{2}(\text { ("verynormalsite.com") } \rightarrow 0 \\
& h_{3}(\text { ("verynormalsite.com") } \rightarrow 4
\end{aligned}
\]} \\
\hline & & \begin{tabular}{l}
Index \\
\(\rightarrow\)
\end{tabular} & 0 & 1 & 2 & 3 & 4 \\
\hline & & \(t_{1}\) & 0 & 1 & 1 & 0 & 0 \\
\hline & & \(t_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline & & \(t_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
function \(\operatorname{CONTAINs}(x)\)
 return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1\)
``` & \[
t_{k}\left[h_{k}(x)\right]
\] & \multicolumn{5}{|c|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{2}{*}{True True} & \multicolumn{2}{|l|}{True} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& h_{1}(\text { "verynormalsite.com") } \rightarrow 2 \\
& h_{2} \text { ("verynormalsite.com") } \rightarrow 0 \\
& h_{3} \text { ("verynormalsite.com") } \rightarrow 4
\end{aligned}
\]} \\
\hline & Index & 0 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Since all conditions satisfied, returns True (incorrectly)}} \\
\hline & & & & & & \\
\hline & \(\mathrm{t}_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline & \(\mathrm{t}_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters - Three operations}
- Set up Bloom filter for \(S=\varnothing\)
\[
\begin{aligned}
& \text { function } \operatorname{INITIALIZE}(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
\]
- Update Bloom filter for \(S \leftarrow S \cup\{x\}\)
\[
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
\]
- Check if \(x \in S\)
```

function CONTAINS(x)
return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==

```

\section*{What you can't do with Bloom filters}
- There is no delete operation
- Once you have added something to a Bloom filter for \(S\), it stays
- You can't use a Bloom filter to name any element of \(S\)

But what you can do makes them very effective!

\section*{Brain Break}


\section*{Analysis: False positive probability}

Question: For an element \(x \in U\), what is the probability that contains \((x)\) returns true if \(\operatorname{add}(x)\) was never executed before?

\section*{Analysis: False positive probability}

Question: For an element \(x \in U\), what is the probability that contains \((x)\) returns true if \(\operatorname{add}(x)\) was never executed before?

Probability over what?! Over the choice of the \(\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}\)

Assumptions for the analysis:
- Each \(\mathbf{h}_{i}(x)\) is uniformly distributed in \([m]\) for all \(x\) and \(i\)
- Hash function outputs for each \(\mathbf{h}_{i}\) are mutually independent (not just in pairs)
- Different hash functions are independent of each other


False positive probability - Events
Assume we perform \(\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)\)
\[
+ \text { contains }(x) \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
\]

Event \(E_{i}\) holds iff \(\mathbf{h}_{i}(x)=\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}\)


\section*{E:}

False positive probability - Events

Event \(E_{i}^{c}\) holds of \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)
\]

\section*{False positive probability - Events}

Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and ... and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { Independence of values } \\
\text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{array} \\
& \longrightarrow
\end{aligned}=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
\]

\section*{False positive probability - Events}

Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
\]
\[
\begin{aligned}
& \text { Independence of values } \\
& \text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{aligned} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
\]

Outputs of \(\boldsymbol{h}_{i}\) uniformly spread
\[
\begin{aligned}
& \text { tputs of } \boldsymbol{h}_{i} \text { uniformly spread } \\
& \longrightarrow \prod_{j=1}^{n}\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n} \\
& P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)=\left(1-\frac{1}{m}\right)^{n}
\end{aligned}
\]

\section*{False positive probability - Events}

Event \(E_{i}\) holds iff \(\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}\)
Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
\begin{aligned}
P\left(E_{i}^{c}\right) & =\left(1-\frac{1}{m}\right)^{n} \\
& \longrightarrow \mathrm{FPR}=\prod_{i=1}^{k}\left(1-P\left(E_{i}^{c}\right)\right)=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
\end{aligned}
\]

False Positivity Rate_- Example
\[
\operatorname{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
\]
\[
\text { e.g., } \begin{aligned}
& n=5,000,000 \\
& \\
& k=30 \\
& m=2,500,000
\end{aligned}
\]

\section*{Comparison with Hash Tables - Space}
- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with \(k=30\) and \(m=2,500,000\)
```

Hash Table
(optimistic)
5,000,000 ×40B = 200MB

```

\section*{Bloom Filter}
\(2,500,000 \times 30=75,000,000\) bits
\(<10 \mathrm{MB}\)

\section*{Time}
- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is \(3 \%\)
0.5 seconds DB lookup


Bloom filter lookup

\section*{Bloom Filters typical of....}
... randomized algorithms and randomized data structures.
- Simple
- Fast
- Efficient
- Elegant
- Useful!```

