
CSE 312

Foundations of Computing II
Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna’s office hours on Saturday (tmw) from 2-3pm

1

Agenda

• More on Poisson random variables
• An Application: Bloom Filters!

2

Preview: Poisson

Model: 𝑋 is # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in 𝑡 hours, is 3𝑡
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

𝑋 = # of cars passing through a light in 1 hour

3

Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour. Disjoint time intervals are independent.

4

Know: 𝔼[𝑋] = 𝜆 for some given 𝜆 > 0

1 hour

Discrete version: 𝑛 intervals, each of length 1/𝑛 .
In each interval, there is a car with probability 𝑝 = 𝜆/𝑛 (assume ≤ 1 car can pass by)

Each interval is Bernoulli: 𝑋! = 1 if car in 𝑖th interval (0 otherwise). 𝑃(𝑋! = 1) = 𝜆	/𝑛

𝑋 = ∑!"#$ 𝑋!

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑋~	Bin(𝑛, 𝑝) 𝑃 𝑋 = 𝑖 = $
!

%
$

!
1 − %

$

$&!

indeed! 𝔼 𝑋 = 𝑝𝑛 = 𝜆

Don’t like discretization

5

We want now 𝑛 → ∞

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

!

1 −
𝜆
𝑛

$&!

=
𝑛!

𝑛 − 𝑖 ! 𝑛!
𝜆!

𝑖!
1 −

𝜆
𝑛

$

1 −
𝜆
𝑛

&!

	

𝑋 is binomial 𝑃 𝑋 = 𝑖 = !
"

#
!

"
1 − #

!

!$"

→ 1 → 1→ 𝑒%&
→ 𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "

!

#!
	

10 0 1 10 0 0 0 1 1 0

1/𝑛

Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 𝜆 per
unit time.

• Let 𝑋 be the actual number of events happening in a given time
unit. Then 𝑋 is a Poisson r.v. with parameter 𝜆 (denoted 𝑋 ~ Poi(𝜆))
and has distribution (PMF):

6

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!
	

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume
fixed
average
rate

𝑖 = 0, 1, 2, …

𝐸 𝑋 = λ
Var 𝑋 = λ

Poisson Random Variables

7

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒&% ⋅ %
!

!!
	

This Photo by Unknown Author is licensed
under CC BY-NC

Poisson approximates binomial when:
 𝑛 is very large, 𝑝 is very small, and 𝜆 = 𝑛𝑝	is “moderate”
 e.g. (𝑛	 > 	20	and 𝑝	 < 	0.05), (𝑛	 > 	100	and 𝑝	 < 	0.1)

Formally, Binomial approaches Poisson in the limit as
𝑛	 → 	∞	(equivalently, 𝑝	 → 	0) while holding 𝑛𝑝	 = 	 𝜆

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

Probability Mass Function – Convergence of Binomials

8

𝜆 = 5
𝑝 = '

(

𝑛 = 10,15,20

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 1 3 5 7 9 11 13 15

Bin(10,0.5)

Bin(15,1/3)

Bin(20,0.25)

Poi(5)

𝑎𝑠	𝑛 → ∞, Binomial(n, 𝑝 = 	𝜆/𝑛) → 𝑝𝑜𝑖(𝜆)

Sum of Independent Poisson RVs

9

Let 𝑋~Poi(𝜆#) and 𝑌~Poi(𝜆.)	such that 𝜆 = 𝜆# + 𝜆..
Let 𝑍 = 𝑋 + 𝑌. What kind of random variable is 𝑍 ?
Aka what is the “distribution” of 𝑍 ?

Intuition first:
• 𝑋 is measuring number of (type 1) events that happen in, say, an

hour if they happen at an average rate of 𝜆# per hour.
• 𝑌 is measuring number of (type 2) events that happen in, say, an

hour if they happen at an average rate of 𝜆. per hour.
• 𝑍 is measuring total number of events of both types that happen in,

say, an hour, if type 1 and type 2 events occur independently.
•

Sum of Independent Poisson RVs

10

Theorem. Let 𝑋~Poi(𝜆#) and 𝑌~Poi(𝜆.)	such that 𝜆 = 𝜆# + 𝜆..
Let 𝑍 = 𝑋 + 𝑌. For all 𝑧 = 0,1,2,3…,

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
"

/!
	

More generally, let 𝑋#~Poi 𝜆# , ⋯ , 𝑋$~Poi(𝜆$) such that 𝜆 = Σ!𝜆!.
Let 𝑍 = Σ!𝑋!

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
"

/!
	

Proof

12

𝑃 𝑍 = 𝑧 = Σ0"1/ 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗 Law of total probability

Theorem. Let 𝑋~Poi(𝜆#) and 𝑌~Poi(𝜆.)	such that 𝜆 = 𝜆# + 𝜆..
Let 𝑍 = 𝑋 + 𝑌. For all 𝑧 = 0,1,2,3…,

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
"

/!
	

Proof

13

𝑃 𝑍 = 𝑧 = Σ0"1/ 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗

= Σ0"1/ 𝑃 𝑋 = 𝑗)	𝑃(𝑌 = 𝑧 − 𝑗 = Σ0"1/ 	 𝑒&%# ⋅
𝜆#
0

𝑗!
⋅ 𝑒&%$ ⋅

𝜆.
/&0

𝑧 − 𝑗!

= 𝑒&%#&%$ 	Σ0"1/ 	 ⋅
1

𝑗! 𝑧 − 𝑗!
⋅ 𝜆#

0𝜆.
/&0

= 𝑒&% 	Σ0"1/ 𝑧!
𝑗! 𝑧 − 𝑗!

⋅ 𝜆#
0𝜆.

/&0 1
𝑧!

= 𝑒&% ⋅ 𝜆# + 𝜆. / ⋅ #
/!
= 𝑒&% ⋅ 𝜆/ ⋅ #

/!

Law of total probability

Independence

Binomial
Theorem

14

General principle:
• Events happen at an average rate

of 𝜆 per time unit
• Number of events happening at a

time unit 𝑋 is distributed
according to Poi(𝜆)

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒&% ⋅ %
!

!!
	

• Poisson approximates Binomial when 𝑛 is large,
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables

15

Agenda

• Wrap up Poisson random variables
• An Application: Bloom Filters!

16

Basic Problem

17

Problem: Store a subset 𝑆 of a large set 𝑈.

Example. 𝑈 = set of 128 bit strings
𝑆 = subset of strings of interest

𝑈 ≈ 2128

𝑆 ≈ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?”

for any 𝑥 ∈ 𝑈.
2. Minimal storage requirements.

Naïve Solution I – Constant Time

18

Idea: Represent 𝑆	as an array A with 2128 entries.

𝟎 𝟏 𝟐 … 𝑲 …

𝟏 𝟎 𝟏 𝟎 𝟏 … 𝟎 𝟎

A 𝑥 = E1	 if	𝑥 ∈ 𝑆0	 if	𝑥 ∉ 𝑆

Membership test: To check.𝑥 ∈ 𝑆 just check whether A 𝑥 = 1.

Storage: Require storing 2128 bits, even for small 𝑆.

👍 😀→ constant time!

👎 😢

𝑆 = {0,2, … , K}

Naïve Solution II – Small Storage

19

Idea: Represent 𝑆	as a list with |𝑆| entries.

0 2 … K

Storage: Grows with |𝑆| only 👍 😀

Membership test: Check	𝑥 ∈ 𝑆 requires time linear in |𝑆|
(Can be made logarithmic by using a tree) 👎 😢

𝑆 = {0,2, … , K}

Hash Table

20

Idea: Map elements in 𝑆	into an array 𝐴 of size 𝑚	using a hash function 𝐡

hash function 𝐡: 𝑈 → [𝑚]

1
2

3
4 5

K-1
K

1

2
3

4
5

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

Hashing: collisions

Collisions occur when 𝒉 𝑥 = 𝒉 𝑦 for some distinct 𝑥, 𝑦 ∈ 𝑆,
i.e., two elements of set map to the same location

• Common solution: chaining – at each
location (bucket) in the table, keep
linked list of all elements that hash there.

21

1 2 3 4 5 𝑚…

𝑥!

𝑥"

𝑥#

𝒉 𝑥!	 = 𝒉 𝑥"

Hash Table

22

Idea: Map elements in 𝑆	into an array 𝐴 of size 𝑚	using a hash function 𝐡

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

Challenge 2: Ensure
 𝑚 = 𝑂(𝑆)

Challenge 1: Ensure
𝒉 𝑥 ≠ 𝒉 𝑦 for
most 𝑥, 𝑦 ∈ 𝑆	

Good hash functions to keep collisions low

• The hash function 𝒉 is good iff it
– distributes elements uniformly across the 𝑚 array locations so that
– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332

23

Hashing: summary

24

Hash Tables

• They store the data itself
• With a good hash function, the data

is well distributed in the table and
lookup times are small.

• However, they need at least as much
space as all the data being stored,
i.e., 𝑚 = Ω(𝑆)

Can we do
better!?

In some cases, 𝑆 is huge,
or not known a-priori …

Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

Bloom Filters – Main points

• Probabilistic data structure.
• Close cousins of hash tables.
– But: Ridiculously space efficient

• Occasional errors, specifically false positives.

26

Bloom Filters

• Stores information about a set of elements 𝑆 ⊆ 𝑈.
• Supports two operations:

1. add(𝑥) - adds 𝑥 ∈ 𝑈 to the set 𝑆
2. contains(𝑥) – ideally: true if 𝑥 ∈ 𝑆, false otherwise

27

Bloom Filters

• Stores information about a set of elements 𝑆 ⊆ 𝑈.
• Supports two operations:

1. add(𝑥) - adds 𝑥 ∈ 𝑈 to the set 𝑆
2. contains(𝑥) – ideally: true if 𝑥 ∈ 𝑆, false otherwise

28

Instead, relaxed guarantees:
• False → definitely not in 𝑆	
• True → possibly in 𝑆

[i.e. we could have false positives]

Bloom Filters – Why Accept False Positives?

• Speed – both add and contains very very fast.
• Space – requires a miniscule amount of space relative to

storing all the actual items that have been added.
– Often just 8 bits per inserted item!

• Fallback mechanism – can distinguish false positives from
true positives with extra cost
– Ok if mostly negatives expected + low false positive rate

29

Bloom Filters: Application

• Google Chrome has a database of malicious URLs, but it takes a long
time to query.

• Want an in-browser structure, so needs to be efficient and be space-
efficient

• Want it so that can check if a URL is in structure:
– If return False, then definitely not in the structure (don’t need to

do expensive database lookup, website is safe)
– If return True, the URL may or may not be in the structure. Have to

perform expensive lookup in this rare case.

30

Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• Internet routers often use Bloom filters to track blocked IP

addresses.
• In distributed systems when want to check consistency of data across

different locations, might send a Bloom filter rather than the full set
of data being stored.

• Google BigTable uses Bloom filters to reduce disk lookups
• And on and on…

31

Bloom Filters – Ingredients

32

Basic data structure is a 𝑘×𝑚 binary array
“the Bloom filter”
• 𝑘 rows 𝑡%, … , 𝑡& , each of size 𝑚
• Think of each row as an 𝑚-bit vector

𝑘 different hash functions 𝐡%, … , 𝐡&: 𝑈 → [𝑚]

function INITIALIZE(𝑘,𝑚)
 for 𝑖 = 1,… , 𝑘: do
 𝑡! = new bit vector of 𝑚 0s

Size of array
associated to
each hash
function.

Number of
hash
functions

for each hash
function, initialize
an empty bit
vector of size 𝑚

Bloom Filters - Initialization

Index
→

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE(𝑘,𝑚)
 for 𝑖 = 1,… , 𝑘: do
 𝑡! = new bit vector of 𝑚 0s

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

function ADD(𝑥)
 for 𝑖 = 1,… , 𝑘: do
 𝑡![ℎ! 𝑥] = 1

for each hash
function 𝐡𝑖

Index into 𝑖-th bit-vector, at index produced
by hash function and set to 1

𝐡𝑖(𝑥) → result of hash
function 𝐡𝑖 on 𝑥

Bloom Filters: Add

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Index
→

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)
ℎ1(“thisisavirus.com”) → 2

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1
ℎ1(“thisisavirus.com”) → 2

add(“thisisavirus.com”)

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1
ℎ3(“thisisavirus.com”) → 4

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 2

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1
ℎ1(“thisisavirus.com”) → 2

ℎ3(“thisisavirus.com”) → 4

Returns True if the bit vector 𝑡𝑖 for each hash function has bit 1 at
 index determined by ℎ𝑖(𝑥),
Returns False otherwise

Bloom Filters: Contains

function CONTAINS(𝑥)
 return 𝑡# ℎ# 𝑥 == 1 ∧ 𝑡. ℎ. 𝑥 == 1 ∧ ⋯∧ 𝑡: ℎ: 𝑥 == 1

contains(“thisisavirus.com”)

Bloom Filters: Example

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

contains(“thisisavirus.com”)

True

Bloom Filters: Example

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ1(“thisisavirus.com”) → 2

contains(“thisisavirus.com”)

TrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1
ℎ1(“thisisavirus.com”) → 2

contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1
ℎ1(“thisisavirus.com”) → 2

ℎ3(“thisisavirus.com”) → 4

contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Since all conditions satisfied, returns True (correctly)

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1
ℎ1(“thisisavirus.com”) → 2

ℎ3(“thisisavirus.com”) → 4

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

Index
→

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)
ℎ1(“totallynotsuspicious.com”) → 1

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0
ℎ1(“totallynotsuspicious.com”) → 1

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0
ℎ1(“totallynotsuspicious.com”) → 1

ℎ3(“totallynotsuspicious.com”) → 4

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do
 𝑡#[ℎ# 𝑥] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0
ℎ1(“totallynotsuspicious.com”) → 1

ℎ3(“totallynotsuspicious.com”) → 4

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

True

Bloom Filters: False Positives

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ1(“verynormalsite.com”) → 2

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0
ℎ1(“verynormalsite.com”) → 2

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0
ℎ1(“verynormalsite.com”) → 2

ℎ3(“verynormalsite.com”) → 4

Index
→

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Since all conditions satisfied, returns True (incorrectly)

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0
ℎ1(“verynormalsite.com”) → 2

ℎ3(“verynormalsite.com”) → 4

Bloom Filters – Three operations

• Set up Bloom filter for 𝑆 = ∅

• Update Bloom filter for 𝑆 ← 𝑆 ∪ {𝑥}

• Check if 𝑥 ∈ 𝑆

56

function INITIALIZE(𝑘,𝑚)
 for 𝑖 = 1,… , 𝑘: do
 𝑡! = new bit vector of 𝑚 0s

function ADD(𝑥)
 for 𝑖 = 1,… , 𝑘: do
 𝑡![ℎ! 𝑥] = 1

function CONTAINS(𝑥)
 return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡# ℎ# 𝑥 == 1 ∧ ⋯∧ 𝑡$ ℎ$ 𝑥 == 1

What you can’t do with Bloom filters

• There is no delete operation
– Once you have added something to a Bloom filter for 𝑆, it stays

• You can’t use a Bloom filter to name any element of 𝑆

But what you can do makes them very effective!

57

Brain Break

Analysis: False positive probability

Question: For an element 𝑥 ∈ 𝑈, what is the probability that
contains(𝑥) returns true if add(𝑥) was never executed before?

Analysis: False positive probability

Question: For an element 𝑥 ∈ 𝑈, what is the probability that
contains(𝑥) returns true if add(𝑥) was never executed before?

Probability over what?!

Assumptions for the analysis:
• Each 𝐡! 𝑥 is uniformly distributed in [𝑚] for all 𝑥 and 𝑖
• Hash function outputs for each 𝐡!are mutually independent (not

just in pairs)
• Different hash functions are independent of each other

Over the choice of the 𝒉#, … , 𝒉:

False positive probability – Events

61

Assume we perform add 𝑥# , … ,add 𝑥$
+ contains(𝑥) for 𝑥 ∉ {𝑥#, … , 𝑥$}

Event 𝐸! holds iff 𝐡! 𝑥 ∈ {𝐡! 𝑥# , … , 𝐡! 𝑥$ }

𝑃 false	positive = 𝑃 𝐸% ∩ 𝐸' ∩ ⋯∩ 𝐸& =I
#(%

&

𝑃(𝐸#)

𝐡7, … , 𝐡8 independent

False positive probability – Events

62

Event 𝐸! holds iff 𝐡! 𝑥 ∈ {𝐡! 𝑥# , … , 𝐡! 𝑥$ }

𝑃 𝐸#
) = K

*(%

+

𝑃 𝐡# 𝑥 = 𝑧 ⋅ 𝑃 𝐸#
) 	 𝐡# 𝑥 = z)

Event 𝐸!? holds iff 𝐡! 𝑥 ≠ 𝐡! 𝑥# and … and 𝐡! 𝑥 ≠ 𝐡! 𝑥$

LTP

False positive probability – Events

63

𝑃 𝐸!? 	𝐡! 𝑥 = 𝑧 =

Event 𝐸!9 holds iff 𝐡! 𝑥 ≠ 𝐡! 𝑥7 and …
and 𝐡! 𝑥 ≠ 𝐡! 𝑥(

𝑃 𝐡! 𝑥# ≠ 𝑧,… , 𝐡! 𝑥$ ≠ 𝑧	|	𝐡! 𝑥 = 𝑧

=b
0"#

$

𝑃 𝐡! 𝑥0 ≠ 𝑧

= 	𝑃 𝐡! 𝑥# ≠ 𝑧,… , 𝐡! 𝑥$ ≠ 𝑧	Independence of values
of 𝒉! on different inputs

False positive probability – Events

64

𝑃 𝐸!? 	𝐡! 𝑥 = 𝑧 =

Event 𝐸!9 holds iff 𝐡! 𝑥 ≠ 𝐡! 𝑥7 and …
and 𝐡! 𝑥 ≠ 𝐡! 𝑥(

𝑃 𝐡! 𝑥# ≠ 𝑧,… , 𝐡! 𝑥$ ≠ 𝑧	|	𝐡! 𝑥 = 𝑧

=b
0"#

$

𝑃 𝐡! 𝑥0 ≠ 𝑧

=b
0"#

$

1 −
1
𝑚

= 1 −
1
𝑚

$

𝑃 𝐸!? =c
/"#

@

𝑃 𝐡! 𝑥 = 𝑧 ⋅ 𝑃 𝐸!? 	𝐡! 𝑥 = z) = 1 −
1
𝑚

$

= 	𝑃 𝐡! 𝑥# ≠ 𝑧,… , 𝐡! 𝑥$ ≠ 𝑧	Independence of values
of 𝒉! on different inputs

Outputs of 𝒉! uniformly spread

False positive probability – Events

65

Event 𝐸! holds iff 𝐡! 𝑥 ∈ {𝐡! 𝑥# , … , 𝐡! 𝑥$ }

Event 𝐸!? holds iff 𝐡! 𝑥 ≠ 𝐡! 𝑥# and … and 𝐡! 𝑥 ≠ 𝐡! 𝑥$

𝑃 𝐸!? = 1 −
1
𝑚

$

FPR =I
#(%

&

1 − 𝑃 𝐸#
) = 1 − 1 −

1
𝑚

, &

False Positivity Rate – Example

66

FPR = 1 − 1 −
1
𝑚

, &

e.g., 𝑛 = 5,000,000
𝑘 = 30
𝑚 = 2,500,000

FPR = 1.28%

Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with 𝑘	 = 	30 and 𝑚 = 	2,500,000

(optimistic)
5,000,000	×40𝐵 = 200MB

2,500,000	×30 = 75,000,000 bits

< 10 MB

Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 3%

100000	×0.03	×500ms
1ms +

+2000×500	ms

102000
≈ 	25.51ms	

Bloom filter lookup
malicious URLs

0.5 seconds DB lookup
false positives

total URLs

Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!

69

