CSE 312 Foundations of Computing II

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna's office hours on Saturday (tmw) from 2-3pm

Agenda

- More on Poisson random variables
- An Application: Bloom Filters!

Preview: Poisson

Model: *X* is *#* events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour

Example – Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X] = \lambda$ for some given $\lambda > 0$

Discrete version: *n* intervals, each of length 1/n. In each interval, there is a car with probability $p = \lambda/n$ (assume ≤ 1 car can pass by)

Each interval is Bernoulli: $X_i = 1$ if car in i^{th} interval (0 otherwise). $P(X_i = 1) = \lambda / n$

$$X = \sum_{i=1}^{n} X_{i} \qquad X \sim \operatorname{Bin}(n, p) \qquad P(X = i) = {\binom{n}{i}} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

indeed! $\mathbb{E}[X] = pn = \lambda$ 4

We want now $n \rightarrow \infty$

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
 $i = 0, 1, 2, ...$

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

Poisson approximates binomial when:

n is very large, *p* is very small, and $\lambda = np$ is "moderate" e.g. (n > 20 and p < 0.05), (n > 100 and p < 0.1)

Formally, Binomial approaches Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u> 7

Probability Mass Function – Convergence of Binomials

Sum of Independent Poisson RVs

Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. What kind of random variable is Z? Aka what is the "distribution" of Z?

Intuition first:

- X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_1 per hour.
- Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_2 per hour.
- Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0, 1, 2, 3 ...,

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \dots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

10

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. For all z = 0,1,2,3..., $P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$

Proof

 $P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$ Law of total probability

Proof

$$P(Z = z) = \sum_{j=0}^{Z} P(X = j, Y = z - j)$$
Law of total probability
$$= \sum_{j=0}^{Z} P(X = j) P(Y = z - j) = \sum_{j=0}^{Z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z - j!}$$
Independence
$$= e^{-\lambda_{1} - \lambda_{2}} \left(\sum_{j=0}^{Z} \cdot \frac{1}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{Z} \frac{z!}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z - j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_{1} + \lambda_{2})^{z} \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!}$$
Binomial
Theorem

Poisson Random Variables

Definition. A Poisson random variable *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to Poi(λ)
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Agenda

- Wrap up Poisson random variables
- An Application: Bloom Filters!

Basic Problem Problem: Store a subset *S* of a <u>large</u> set *U*.

Example. U = set of 128 bit strings $|U| \approx 2^{128}$ S = subset of strings of interest $|S| \approx 1000$

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Membership test: To check. $x \in S$ just check whether A[x] = 1. \rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with *S* entries.

$$S = \{0, 2, \dots, K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

F 😥

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
 i.e., m = Ω(|S|)

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters to the rescue

(Named after Burton Howard Bloom)

Bloom Filters – Main points

- <u>Probabilistic</u> data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- <u>Occasional</u> errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set *S*
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow **definitely** not in *S*
- True \rightarrow **possibly** in *S*
 - [i.e. we could have *false positives*]

Bloom Filters – Why Accept False Positives?

- **Speed** both **add** and **contains** very very fast.
- Space requires a miniscule amount of space relative to storing all the actual items that have been added.
 – Often just 8 bits per inserted item!
- Fallback mechanism can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- Internet routers often use Bloom filters to track blocked IP addresses.
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- And on and on...

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- $k \text{ rows } t_1, \dots, t_k$, each of size m
- Think of each row as an *m*-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k: U \to [m]$

Bloom Filters - Initialization

Bloom filter t of length m = 5 that uses k = 3 hash functions

function INITIALIZE (k, m) for $i = 1,, k$: do t_i = new bit vector of m 0s						
	Index →	0	1	2	3	4
	t ₁	0	0	0	0	0
	t ₂	0	0	0	0	0
	t ₃	0	0	0	0	0

Bloom Filters: Add

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 2$

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("this is a virus.com") $\rightarrow 4$

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("this is a virus.com") $\rightarrow 4$

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

True

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2$	$[h_2(x)] == 1 \wedge \cdots$	$\wedge t_k[h_k(x)] ==$	= 1	cont	ains("this	isavirus.c	com")	
True	True True			$h_1(")$ $h_2(")$ $h_3(")$	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com") us.com") us.com")	ightarrow 2 ightarrow 1 ightarrow 4	
		Index →	0)	1	2	3	4
		t ₁	0		0	1	0	0
		t ₂	0		1	0	0	0
		t ₃	0		0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)	$h \neq [h(w)] = -$		cont	ains("this	isavirus.c	com")	
$\frac{\operatorname{True}}{\operatorname{True}} = \frac{\operatorname{True}}{\operatorname{True}}$	$\frac{f(t_k(x))}{Trt}$	ue	$h_1(")$ $h_2(")$ $h_3(")$	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com") us.com") us.com")	$\rightarrow 2$ $\rightarrow 1$ $\rightarrow 4$	
	Index		0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (corre	ctly)			
	Ч		U	U	I	U	0
	t ₂		0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 1$

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

 h_2 ("verynormalsite.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)	$-1 \wedge t [h(x)] = -2$	$1 \wedge \dots \wedge t [h(x)] = -$	- 1	cont	ains("very	ynormalsi	ite.com")	
Tru	e True	Tru	Je	$h_1(")$ $h_2(")$ $h_3(")$	verynorm verynorm <mark>verynorm</mark>	alsite.cor alsite.cor alsite.cor	n") → 2 n") → 0 n") → 4	
		Index →		0	1	2	3	4
		t ₁		0	1	1	0	0
		t ₂		1	1	0	0	0
		t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)	$h \in [h(\alpha)]$		cont	ains("very	/normalsi	te.com")	
$True \qquad True$	$\frac{\nabla t_k[n_k(x)]}{Trr}$	Je	$h_1(``h_2(``h_3(``$	verynorm verynorm <mark>verynorm</mark>	alsite.cor alsite.cor <mark>alsite.cor</mark>	n") → 2 n") → 0 n") → 4	
	Index		0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (i	incor	rectly)			
	۲ ₁		U	I	1	U	- 0
	t ₂		1	1	0	0	0
	t ₃		0	0	0	0	1

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

What you can't do with Bloom filters

- There is no delete operation
 - Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of *S*

But what you *can* do makes them very effective!

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis:

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability – Events

Assume we perform $add(x_1), \dots, add(x_n)$ + contains(x) for $x \notin \{x_1, \dots, x_n\}$

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)}$

$$P(\text{false positive}) = P(E_1 \cap E_2 \cap \dots \cap E_k) = \prod_{i=1}^k P(E_i)$$
$$\mathbf{h}_1, \dots, \mathbf{h}_k \text{ independent}$$

61

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)$$

$$\mathsf{LTP}$$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

 $P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$

FPR =
$$\prod_{i=1}^{k} (1 - P(E_i^c)) = (1 - (1 - \frac{1}{m})^n)^k$$

False Positivity Rate – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$
FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%
 false positives
 1ms + 100000 × 0.03 × 500ms + 2000 × 500 ms
 1ms + 102000
 total URLs

Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!