CSE 312
Foundations of Computing Il

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna’s office hours on Saturday (tmw) from 2-3pm

Agenda

e More on Poisson random variables
* An Application: Bloom Filters!

Preview: Poisson

Model: X is # events that occur in an hour

— Expect to see 3 events per hour (but will be random)
— The expected number of events in t hours, is 3t
— Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour

Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through alight in 1 hour. Disjoint time intervals are independent.

Know: E[X| = A for some given 1 > 0

1 hAour

YT T T S| S

1 I ol 11 ol 11 ol ol ol
ol 1l ol 1 1 ol 11 ol olf ol 1

Discrete version: n intervals, each of length 1/n .
In each interval, there is a car with probability p = 1/n (assume < 1 car can pass by)

Each interval is Bernoulli: X; = 1 if carin i*" interval (0 otherwise) PX;=1)=21/n
n—i
X=X)1Xi X~Bin(n,p) P(X=1i)= (n)() (1 ——)
indeed! E|[X|] =pn=41 4

Don’t like discretization Xis binomial P(X = 1) = Gl

(1/n |
— A B A L. R B R A .
P I) B R T B I S B A pey I A L
We want now n — o
N2 AN\ L N\" A\
(X=10 (l)(n)(n) (n—i)!n‘i!(n)(n)
\ J

'1 \ ' J\ ' J

2l - — e~ 4 -1
SPX=i)=e* = 5

Poisson Distribution

Siméon Denis Poisson
1781-1840

* Suppose “events” happen, independently, at an average rate of 1 per

unit time.

* Let X be the actual number of events happening in a given time
unit. Then X is a Poisson r.v. with parameter 4 (denoted X ~ Poi(1))

and has distribution (PMF):

Several examples of “Poisson processes”:
of cars passing through a traffic light in 1 hour
of requests to web servers in an hour

of photons hitting a light detector in a given interval

of patients arriving to ER within an hour

Assume
fixed
average
rate

1=20,1,2,...
E(X)=A
Var(X) = A

Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 = 0 is such
thatforalli =0,1,2,3 ..,

Poisson approximates binomial when:
nis very large, p is very small, and A = np is “moderate”
eg.(n > 20andp < 0.05), (n > 100andp < 0.1)

Formally, Binomial approaches Poisson in the limit as
n — oo (equivalently,p — 0)while holdingnp = A

This Photo by Unknown Author is licensed
under CC BY-NC 7

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

Probability Mass Function — Convergence of Binomials

03

025

Bin(10,0.5)

_-:Bin(15,1/3)

~~~-Bin(20,0.25)

(¢]
<l 1 8 5 7 9 11 13 15

as n — o, Binomial(n, p = A/n) - poi(A)



Sum of Independent Poisson RVs

Let X~Poi(1,) and Y~Poi(1,) suchthat 1 = 1; + 1,.
Let Z = X + Y. Whatkind of random variableis Z ?
Aka what is the “distribution’ of Z ?

Intuition first:

X is measuring number of (type 1) events that happen in, say, an
hour if they happen at an average rate of 4, per hour.

* Y is measuring number of (type 2) events that happen in, say, an
hour if they happen at an average rate of 1, per hour.

7 is measuring total number of events of both types that happen in,
say, an hour, if type 1 and type 2 events occur independently.



Sum of Independent Poisson RVs
 Theorem. Let X~Poi(1,) and Y ~Poi(1,) such that 1 = 1; + 4,.
letZ=X+Y. Forallz=0123..,

More generally, let X; ~Poi(4,), -:-, X,,~Poi(4,,) such that 4 = Z;1;.
Let Z = ZiXi
PZ=z)=e*.2

Z!

10



_____________________________________________________________________________________________________________________________________________________________________

' Theorem. Let X~Poi(1,) and Y ~Poi(1,) such that 1 = 1; + 4,.
LetZ=X+Y.Forallz=0,1,23 ..,

12



Proof

P(Z=2)=3PX=jY=2z—-})

=3 PX=))P(Y=2—)) =5, e

_ -2 jaz-]

— ¢~M z(zjzzo .j!Z—j!./ll/lz )
Z! - A\ 1

_ 2 vz Cajaz—j\ t

- ¢ (ijoj!z—j! M4, )z!

=e A (U +2,)7 ~=eh.}2.—

Z! - VA

Law of total probability

by AL
IR - Independence
j! z— ]!
Binomial
Theorem

13



Poisson Random Variables

Definition. A Poisson random variable X with parameter 1 = 0 is such
thatforalli =0,1,2,3 ..,

General principle:

* Events happen at an averagerate * Poisson approximates Binomial when n is large,
of A1 per time unit p is small, and np is moderate

* Number of events happeningata <+ Sum of independent Poisson is still a Poisson
time unit X is distributed
according to Poi(1)

14



15



Agenda

* Wrap up Poisson random variables
* An Application: Bloom Filters! -

16



Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| =~ 218
S = subset of strings of interest S| ~ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € S?”
' forany x € U.

2. Minimal storage requirements.

17



Naive Solution | - Constant Time

—| A :{1 ifx €S

Idea: Represent S as an array A with 22 entries. 0 ifx&sS

Lo 2 K
1 0 1 0 1 0 0

S=102,.., K

Membership test: To check. x € S just check whether A[x]| = 1.
— constant time! «'E @

Storage: Require storing 2'° bits, even for small S. ‘\é @

18



Naive Solution Il - Small Storage

Idea: Represent S as a list with |S| entries.

S =1{0.2,..,K ‘ o‘/\ 2 T/\ {\ K.

Storage: Grows with |S| only ,\g @

Membership test: Check x € S requires time linearin |S|

(Can be made logarithmic by using a tree) _U% @

19



Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A[h(x)] = x

Storage: m elements (size of array)

hash function h: U —» [m]

20



Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
i.e., two elements of set map to the same location

12 (3|4

Common solution: chaining — at each

5
location (bucket) in the table, keep
h(x1 ) = h(x3)

linked list of all elements that hash there.

21



Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A[h(x)] = x

Storage: m elements (size of array) %
O
O
Challenge 1: Ensure
O 8

h(x) # h(y) for
most x,y € S

Challenge 2: Ensure
m = 0(|S])

\

22



Good hash functions to keep collisions low

* The hash function his good iff it
— distributes elements uniformly across the m array locations so that

— pairs of elements are mapped independently

““Universal Hash Functions” - see CSE 332

23



Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, |S| is huge,

* However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

e, m = Q(S]) —
\ Can we do

better!?



Bloom Filters
to the rescue

(Named after Burton Howard Bloom)



Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.

26



Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:

1. add(x)-adds x € U to theset S

2. contains(x) —ideally: trueif x € §, false otherwise

27



Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:

1. add(x)-adds x € U to theset S

2. contains(x) —ideally: trueif x € §, false otherwise

Instead, relaxed guarantees:
- False — definitely notin S
- True — possibly in S
[i.e. we could have false positives]

28



Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.
— Often just 8 bits perinserted item!

* Fallback mechanism - can distinguish false positives from
true positives with extra cost
— Ok if mostly negatives expected + low false positive rate

29



Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long

time to query.

Want an in-browser structure, so needs to be efficient and be space-

efficient

Want it so that can check if a URL is in structure:

~ If return False, then definitely not in the structure (don’t need to
do expensive database lookup, website is safe)

- If return True, the URL may or may not be in the structure. Have to
perform expensive lookup in this rare case.

30



Bloom Filters — More Applications

* Any scenario where space and efficiency are important.
* Used a lot in networking

* |nternet routers often use Bloom filters to track blocked IP
addresses.

* In distributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups
* And on and on...

31



Bloom Filters - Ingredients

Basic data structure is a kXm binary array
“the Bloom filter”

* krowsty,..,t;, each of sizem

* Think of each row as an m-bit vector

k different hash functions hy, ..., h,: U — |m]

32



Bloom Filters - Initialization

Size of array

Number of :
associated to

hash N hash

functions eac . as
function.

function iNnTIALIZE(k, M)

. for each hash
— n —’
fori=1,..,k:do function, initialize

t; = new bit vector of m Os an empty bit
vector of size m




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

0 1
t, 0 0
t, 0 0
t, 0 0




Bloom Filters: Add

function ADD(x)
fori = 1, cer ) k: do | ———— for each hash

ti[hi(x)] =1 function h,

Index into i-th bit-vector, at index produced h;(x) — result of hash
by hash function and set to 1 function h; on x



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) hi(“thisisavirus.com”) — 2
fori =1, .., k:do

ti[h;(x)] =1

Index 0 1 2
t 0 0 0
t, 0 0 0
ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) hi(“thisisavirus.com”) — 2
fori=1,..,k:do h,(“thisisavirus.com”) — 1
t;[hi(x)] =1
Index 0 1 2
t4 0 0 1
t, 0 0 0
ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abp(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
t;[h;(x)] =1 hy(“thisisavirus.com”) — 4

Index 0 1 2

tq 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abp(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
t;[h;(x)] =1 hy(“thisisavirus.com”) — 4

Index 0 1 2

tq 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Contains

function CONTAINS(x)

returnt,[h;(x)] == 1A t,|h,(x)] == 1A At [h(x)] == 1

Returns True if the bit vector t; for each hash function has bit 1 at
index determined by h;(x),
Returns False otherwise



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1
h;(“thisisavirus.com”) — 4

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2
h,(“thisisavirus.com”) — 1

h;(“thisisavirus.com”) — 4

Index 0 1 2 3
Since all conditions satisfied, returns True (correctly)
1 U U U
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x)
fori=1,..,k:do

tilhi(x)] =1

Index 0 1 2
t 0 0 1
t, 0 1 0
ts 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori =1, .., k:do

ti[h;(x)] =1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
ti[h;(x)] =1
Index 0 1 2 3
t, 0 1 1 0
t 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
t; [hl(x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t, 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
t; [hl(x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t, 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

h;(“verynormalsite.com”) — 4

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com?)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

h;(“verynormalsite.com”) — 4

Index 0 1 2 3

Since all conditions satisfied, returns True (incorrectly)

1 U U

t, 1 1 0 0

ty 0 0 0 0




Bloom Filters — Three operations

* Set up Bloom filter for S = @

* Update Bloom filter for S « S U {x}

* Checkifx €S

function INITIALIZE(k, m)

fori=1,..,k:do
t; = new bit vector of m Os

function ADD(x)
fori=1,..,k:do

56



What you can’t do with Bloom filters

* Thereis no delete operation
— Once you have added something to a Bloom filter for S, it stays

* You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!

57



N
!
N

X




Analysis: False positive probability

Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?



Analysis: False positive probability

 Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?

Probability over what?!  Over the choice of the hy, ..., h;,

Assumptions for the analysis:

 Each h;(x) is uniformly distributed in [m] for all x and i

* Hash function outputs for each h;are mutually independent (not
just in pairs)

 Different hash functions are independent of each other



False positive probability — Events

Assume we perform add(x, ), ...,add(x,,)
+ contains(x) forx & {xq, ..., x,}

Event E; holds iff h;(x) € {h;(x;), ..., h;(x,)}

K
P(false positive) = P(E;NE, Nn---NE},) = HP(Ei)
i=1

h4, ..., h; independent

61



False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,,)}
Event E; holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,)

P(ES) = ) P(h(x) = 2) - P(Ef | hy(x) = 7)

LTP

62



False positive probability - Events |and h;(x) # h;(x,)

Event E{ holds iff h; (x) # h;(x;) and ...

P(Ef|hi(x) =2) = P(h;(xy) # z, ..., h;(xp) # z | hy(x) = 2)

Independence of values
of h; on different inputs

= P(i(xy) # 2, 0 (x) # 2)

N ﬁP(hi(xj) + 2)

63



False positive probability — Events

Event E{ holds iff h; (x) # h;(x;) and ...

and hL(X) + hl-(xn)

P(Ef|hi(x) =2) = P(h;(xy) # z, ..., h;(xp) # z | hy(x) = 2)

Independence of values
of h; on different inputs

_—Y

Outputs of h; uniformly spread

A A

1__

— P(hl(xl) * Z, ...,hi(Xn) = Z)

N ﬁP(hi(xj) + 2)
(-2

m J=1 n
‘p(Eic) = z P(h;(x) = z) - P(E{ | hj(x) = z) = (1 _;11)
z=1

64




False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,,)}

Event E; holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,)
n

P(ES) = (1 _ 1)

m

) rrR - lj(l - P(Ef)) = (1 - (1 _i)n>k

65



False Positivity Rate — Example
1\™\"
FPR = (1—(1——) )
m

e.g.,n = 5,000,000 e
k= 30 mm) FPR=1.28%

m = 2,500,000

66



Comparison with Hash Tables - Space

o Google storing 5 million URLs, each URL 40 bytes.
e Bloom filter withk = 30andm = 2,500,000

Hash Table

(optimistic)
5,000,000 x40B = 200MB

Bloom Filter

2,500,000 x30 = 75,000,000 bits
<10 MB




Time

e Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
e 0.5seconds to do lookup in the database, 1ms for lookup in Bloom filter.

Suppose the false positive rate is 3%
’ PP P . 0.5 seconds DB lookup

false positives — \

100000 x0.03 x500ms +2000x500 ms
Ims + x

102000
T total URLs malicious URLs

~ 25.51ms

Bloom filter lookup



Bloom Filters typical of....

. randomized algorithms and randomized data structures.

* Simple

* Fast

* Efficient
* Elegant
* Useful!

69



