
CSE 312

Foundations of Computing II
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Agenda

• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
• Introduction to continuous zoo
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Often we want to model experiments where the outcome is not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1! = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

" ! ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

" 0.2 ≤ ! ≤ 0.5 =

0 10.50.2
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

" ! = 0.5 =
0 10.5



Bottom line

• This gives rise to a different type of random variable
• " ! = * = 0 for all * ∈ [0,1]
• Yet, somehow we want
– ! " ∈ [0,1] = 1
– ! " ∈ [*, +] = + − *
– …

• How do we model the behavior of !?
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First try:  A discrete approximation



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 0 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1- = 0.71237131931129576…

Discrete approximation?
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Recall:  Cumulative Distribution Function (CDF)

11-1 0 1 2 3 -1 0 1 2 3
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Definition. A continuous random variable 0 is defined by a 
probability density function (PDF) 3!: ℝ → ℝ, such that 
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Non-negativity: !4 " ≥ 0 for all " ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1
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Probability Density Function - Intuition

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"
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Probability Density Function - Intuition

4

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

Density ≠ Probability

!4 4 ≠ 0 0 2 = 4 = 0

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"



19

Probability Density Function - Intuition

44 − 6
2 4 + 6

2

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

0 2 ≈ 4 ≈ 0 4 − 6
2 ≤ 2 ≤ 4 + 6

2 = 3
:5;<

:7;< !4 " 	d" ≈ 6!4(4)

What !4(") measures: The local rate at which probability accumulates 

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"



0 2 ≈ 4
0 2 ≈ < ≈ 6!4 4

6!4 < = !4 4
!4 < 20

Probability Density Function - Intuition

= - ≈ ?
= - ≈ @ = 2

? @

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

0 2 ≈ 4 ≈ 0 4 − 6
2 ≤ 2 ≤ 4 + 6

2 = 3
:5;<

:7;< !4 " 	d" ≈ 6!4(4)

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"



Definition. A continuous random variable 0 is defined by a 
probability density function (PDF) 3!: ℝ → ℝ, such that
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Non-negativity: !4 " ≥ 0 for all " ∈ ℝ
Normalization: ∫56

76!4 " 	d" = 1

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

0 2 ≈ 4 ≈ 0 4 − 6
2 ≤ 2 ≤ 4 + 6

2 = 3
:5;<

:7;< !4 " 	d" ≈ 6!4(4)

0 2 ≈ 4
0 2 ≈ < ≈ 6!4 4

6!4 < = !4 4
!4 <

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 0 is 
2! 7 = " 0 ≤ 7 = ∫"#

$ 3! * d*
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By the fundamental theorem of Calculus -! . = "
"# /!(.)

PC a



From Discrete to Continuous

Discrete Continuous
PMF/PDF 2! . = ! 3 = . -! . ≠ ! 3 = . = 0

CDF /! . = 5
$ % #

2!(6) /! . = 7
&'

#
-! 6 86

Normalization 5
#
2! . = 1 7

&'

'
-! . 8. = 1

Expectation 9 : 3 =5
#
: . 2!(.) 9 : 3 = 7

&'

'
: . -! . 8.

f Fx x
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PDF of Uniform RV
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-! . = ;1, . ∈ [0,1]
0, . ∉ [0,1]

0

1

3 ∼ Unif(0,1) ,4 " = 0(2 ≤ ") = =
0 " ≤ 0
" 0 ≤ " ≤ 1
1 1 ≤ "



28

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ
Normalization: ∫56

76!4 " 	d" = 1

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

0 2 ≈ 4 ≈ 6!4(4)
0 2 ≈ 4
0 2 ≈ < ≈ 6!4 4

6!4 < = !4 4
!4 <

, - − , / = 0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"

3 ∼ Unif(0,1)
-! . = ;1, . ∈ [0,1]

0, . ∉ [0,1]

,4 " = 0(2 ≤ ") = =
0 " ≤ 0
" 0 ≤ " ≤ 1
1 1 ≤ "



PDF of Uniform RV
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-! . = ;1, . ∈ [0,1]
0, . ∉ [0,1]

3
56

76
!4 " 	d" = 3

A

B
!4 " 	d" = 1 ⋅ 1 = 1

0

1

3 ∼ Unif(0,1) Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1



Probability of Event

30
10

0

1

3 ∼ Unif(0,1) 

/ -

-! . = ;1, . ∈ [0,1]
0, . ∉ [0,1]

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"

a 0.2

b 0.5
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Probability of Event

32
10

0

1

3 ∼ Unif(0,1) 

-! . = ;1, . ∈ [0,1]
0, . ∉ [0,1]

Non-negativity: !4 " ≥ 0 for all " ∈ ℝ

Normalization: ∫56
76!4 " 	d" = 1

0 / ≤ 2 ≤ - = 3
8

9
!4 " 	d"

0 2 = 4 = 0 4 ≤ 2 ≤ 4 = 3
:

:
!4 " 	d" = 0

0 2 ≈ 4 ≈ 6!4 4 = 6
0 2 ≈ 4
0 2 ≈ < ≈ 6!4 4

6!4 < = !4 4
!4 <



PDF of Uniform RV

33
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-! . =

0

3 ∼ Unif(0,0.5) 
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PDF of Uniform RV
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-! . = ;2, . ∈ [0,0.5]
0, . ∉ [0,0.5]

3
56

76
!4 " 	d" = 3

A

B
!4 " 	d" = 2 ⋅ 0.5 = 1

0

2

3 ∼ Unif(0,0.5) 

Density ≠ Probability

1

0.5

!4 " ≫ 1 is possible!

Probability on [0,0.5]	accumulates at 
twice the rate compared to Unif(0,1)



PDF of Uniform RV
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10

0

3 ∼ Unif(0,0.5) 

0.5

-! . = ;2, . ∈ [0,0.5]
0, . ∉ [0,0.5]



Uniform Distribution

36

-! . = E
1

+ − * . ∈ [*, +]
0 else

3
56

76
!4 " 	d" = - − / 1

- − / = 1

0

1
- − /

3 ∼ Unif(*, +) 

* +



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 0 is 
2! 7 = " 0 ≤ 7 = ∫"#

$ 3! * d*

38

By the fundamental theorem of Calculus -! . = "
"# /!(.)



From Discrete to Continuous

Discrete Continuous
PMF/PDF 2! . = ! 3 = . -! . ≠ ! 3 = . = 0

CDF /! . = 5
$ % #

2!(6) /! . = 7
&'

#
-! 6 86

Normalization 5
#
2! . = 1 7

&'

'
-! . 8. = 1

Expectation 9 : 3 =5
#
: . 2!(.) 9 : 3 = 7

&'

'
: . -! . 8.



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 0 is 
2! 7 = " 0 ≤ 7 = ∫"#

$ 3! * d*

Therefore: ! 3 ∈ [*, +] = /! + − /!(*) 

By the fundamental theorem of Calculus -! . = "
"# /!(.)

/! is monotone increasing, since -! . ≥ 0. That is /! J ≤ /! 8  for J ≤ 8

lim(→&'	/! * = ! 3 ≤ −∞ = 0 lim(→*'	/! * = ! 3 ≤ +∞ = 1



Agenda

• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
• Introduction to continuous zoo
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Expectation of a Continuous RV

43

Definition. The expected value of a continuous RV 3 is defined as

9[3] = 7
&'

*'
-! . ⋅ . d.

Fact. 9[*3 + +R + J] = *9[3] + +9[R] + J Proof follows same 
ideas as discrete case

Y discrete

ECY EYA



Expectation of a Continuous RV

44

Definition. The expected value of a continuous RV 3 is defined as

9[3] = 7
&'

*'
-! . ⋅ . d.

Fact. 9[*3 + +R + J] = *9[3] + +9[R] + J

Definition. The variance of a continuous RV 3 is defined as

Var 3 = 7
&'

*'
-! . ⋅ . − 9[3] +	d. = 9[3+] − 9[3]+

Proofs follow same 
ideas as discrete case

Van Y E Y ENT E Y EY

E 9 Y g Pyls E gA fgcnfxc.la

Y y 11 I



Agenda

• Zoo of continuous random variables
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution

45
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Expectation of a Continuous RV
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Definition.

C[-] = F
!"

#"
G$ H ⋅ H dH

G% H = K1, H ∈ [0,1]
0, H ∉ [0,1]

Example. I ∼ Unif(0,1) 

100

1



Expectation of a Continuous RV

47

Definition.

C[-] = F
!"

#"
G$ H ⋅ H dH

G% H = K1, H ∈ [0,1]
0, H ∉ [0,1]

Example. I ∼ Unif(0,1) 

100

1

G% H ⋅ H = KH, H ∈ [0,1]
0, H ∉ [0,1] 9["] = 1

2 1
+ = 1

2

Area of triangle
100

1

E X IxdX



Uniform Density – Expectation 

48

-! . = E
1

+ − * . ∈ [*, +]
0 else3 ∼ Unif(*, +) 

9[3] = 7
&'

*'
-! . ⋅ .	d.

= 1
+ − *7(

,
.	d. = 1

+ − * V.+
2

(

,

= 1
+ − *

++ − *+
2

= (+ − *)(* + +)
2(+ − *) = * + +

2



Uniform Density – Variance 
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-! . = E
1

+ − * . ∈ [*, +]
0 else3 ∼ Unif(*, +) 

9[3+] = Iffy x dx x2 fadx



Uniform Density – Variance 
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-! . = E
1

+ − * . ∈ [*, +]
0 else3 ∼ Unif(*, +) 

9[3+] = 7
&'

*'
-! . ⋅ .+	d.

= 1
+ − *7(

,
.+	d. = 1

+ − * V.-
3

(

,

= +- − *-
3(+ − *)

= (+ − *)(++ + *+ + *+)
3(+ − *) = ++ + *+ + *+

3



Uniform Density – Variance 
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3 ∼ Unif(*, +) 
K[2<] = -< + /- + /<

3
K[2] = / + -

2

Var 3 = 9[3+] − 9[3]+



Uniform Density – Variance 

52

3 ∼ Unif(*, +) 
K[2<] = -< + /- + /<

3
K[2] = / + -

2

Var 3 = 9[3+] − 9[3]+

= ++ + *+ + *+
3 − *

+ + 2*+ + ++
4

= 4++ + 4*+ + 4*+
12 − 3*

+ + 6*+ + 3++
12

= ++ − 2*+ + *+
12 = + − * +

12



Uniform Distribution Summary
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-! . = E
1

+ − * . ∈ [*, +]
0 else

0

1
- − /

3 ∼ Unif(*, +) 

* +

,4 4 =
0 " < /" − /

- − / " ∈ [/, -]
1 " > -

K 2 = / + -
2

Var 2 = - − / <

12



Agenda

• Zoo of continuous random variables
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution

54



Exponential Density

55

Assume expected # of occurrences of an event per unit of time is R (independently)

• Cars going through intersection
• Number of lightning strikes
• Requests to web server
• Patients admitted to ER

Numbers of occurrences of event in one unit of time: Poisson 
distribution

" : = ; = <"% =
&

;! (Discrete)

How long to wait until next event? Exponential density!

Let’s define it and then derive it!

• Rate of radioactive decay



Exponential Density - Warmup

56

. ∼ 012 3 ⇒ 0 . = 2 = 6!" 3
#

2!

Assume expected # of occurrences of an event per unit of time is R (independently)

What is K SO 	where SO= # occurrences of event per T units of time?

E 2 A 1 1

E 3 37 3

E 2.21
02 1 0.2

2 Poisson at



Exponential Density - Warmup

57

. ∼ 012 3 ⇒ 0 . = 2 = 6!" 3
#

2!

Assume expected # of occurrences of an event per unit of time is R (independently)

What is the distribution of SO= # occurrences of event per T units of time?

K SO = TR

SO is independent over disjoint intervals

So SO ∼ 0UV(TR)



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is R (independently)

Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• Let 2 be the time till the first event. We will compute ,4 T  and !4 T  

• We know SO~0UV TR  is the # of events in the first T units of time, for T ≥ 0.

. ∼ 012 3 ⇒ 0 . = 2 = 6!" 3
#

2!

P X E P 2 0 e E't

FA P X t 1 e
at

fx t Fx t aé too

0 to



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is R (independently)

Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0,∞], unlike Poisson with range {0,1,2, … }
• Let 2~\"] R  be the time till the first event. We will compute ,4 T  and !4 T  

• We know SO~0UV TR  be the # of events in the first T units of time, for T ≥ 0.

• 	0 2 > T = 0 no	event	in	the	cirst	T	units = 0 SO = 0 = f5OP (OP)
!

A! = f5OP

•  ,4 T = 0(2 ≤ T) = 1 − 0 g > T = 1 − f5OP

•  !4 T = T
TO ,4 T = Rf5OP

. ∼ 012 3 ⇒ 0 . = 2 = 6!" 3
#

2!



Exponential Distribution

Definition. An exponential random variable 3	with parameter Z ≥ 0 is 
follows the exponential density

 -! . = ;Z[&8# . ≥ 0
0 . < 0

CDF: For ] ≥ 0, 
/! ] = 1 − [&89

We write : ∼ Exp 3  and say :	that follows the exponential distribution.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

R = 2
R = 1.5
R = 1

R = 0.5

0 2 > T = f5OP



Expectation
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-! . = ;Z[&8# . ≥ 0
0 . < 0

9[3] = 7
&'

*'
-! . ⋅ .	d.

0 2 > T = f5OP



Expectation
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-! . = ;Z[&8# . ≥ 0
0 . < 0

9[3] = 7
&'

*'
-! . ⋅ .	d.

= 7
?

*'
Z[&8# ⋅ .	d.

= ^−(. + 1Z)[
&8#

?

'	
= 1
Z

Var 3 = 1
Z+

9[3] = 1
Z

Somewhat complex calculation 
use integral by parts 

0 2 > T = f5OP



Exponential Distribution

Definition. An exponential random variable 3	with parameter Z ≥ 0 is 
follows the exponential density

 -! . = ;Z[&8# . ≥ 0
0 . < 0

CDF: For ] ≥ 0, 
/! ] = 1 − [&89

We write : ∼ Exp 3  and say :	that follows the exponential distribution.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

R = 2
R = 1.5
R = 1

R = 0.5

0 2 > T = f5OP

9 3 = 1
Z

Var 3 = 1
Z+
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Memorylessness

Definition. A random variable is memoryless if for all _, 6 > 0,

! 3 > _ + 6 3 > _) = ! 3 > 6 .

65

Fact. 0 ∼ Exp(=) is memoryless.

Assuming an exponential distribution, if you’ve waited _ minutes, 
The probability of waiting 6 more is exactly same as when  _ = 0.



Memorylessness of Exponential

66

Fact. 0 ∼ Exp(=) is memoryless.

! 3 > _ + 6	 3 > _) =

Proof.

Proof that assuming exp distr, if you’ve waited U 
minutes, prob of waiting V more is exactly same 
as when  U = 0	

0 2 > T = f5PO



Memorylessness of Exponential

67

Fact. 0 ∼ Exp(=) is memoryless.

! 3 > _ + 6	 3 > _) = ! 3 > _ + 6 ∩ 3 > _
!(3 > _)

= ! 3 > _ + 6
!(3 > _)

= [&8(A*$)
[&8A = [&8$ = !(3 > 6)

Proof.

Proof that assuming exp distr, if you’ve waited U 
minutes, prob of waiting V more is exactly same 
as when  U = 0	

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

0 2 > T = f5PO



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?

I	~	\"]( 110)

0 10 ≤ I ≤ 20 = 3
BA

<A 1
10 f

5 X
BA	h"

4 = X
BA so h4 = TX

BA

0 10 ≤ I ≤ 20 = 3
B

<
f5:	h4 = −f5: i

B

<
= f5B − f5<



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?

I	~	\"]( 110)
so ,Y T = 1 − f5

"
#!

0 10 ≤ I ≤ 20 = ,Y 20 − ,Y(10)
                                = 1 − f5

$!
#! − 1 − f5

#!
#! = f5B − f5<



Agenda

• Zoo
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution

71



The Normal Distribution

72

Definition. A Gaussian (or normal) random variable with 
parameters b ∈ ℝ and d ≥ 0	has density

 -! . = C
+DE [

& !"# $
$%$

We say that 2 follows the Normal Distribution, and write 2 ∼ j(k, l<). 

Carl Friedrich 
Gauss

j(0, 1).



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters b ∈ ℝ and d ≥ 0	has density

 -! . = C
+DE [

& !"# $
$%$

We say that 2 follows the Normal Distribution, and write 2 ∼ j(k, l<). 

Carl Friedrich 
Gauss

Fact. If 3 ∼ e b, d+ , then 9[3] = b, and Var 3 = d+



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters b ∈ ℝ and d ≥ 0	has density

 -! . = C
+DE [

& !"# $
$%$

We say that 2 follows the Normal Distribution, and write 2 ∼ j(k, l<). 

Carl Friedrich 
Gauss

We will see next time why the normal distribution is (in some sense) the most 
important distribution. 

Fact. If 3 ∼ e b, d+ , then 9[3] = b, and Var 3 = d+

Proof of expectation is easy because density curve is symmetric around k,
                    !4 k − " = !4(k + "), but proof for variance requires integration of f5X$/<



The Normal Distribution

75

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18

k = 0, l< = 3

k = 0,
 l< = 8

k = −7,
 l< = 6

k = 7,
 l< = 1

Aka a “Bell Curve” (imprecise name)


