CSE 312
Foundations of Computing II

Lecture 15: Continuous RV

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.
- Introduction to continuous zoo

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$P(0.2 \leq T \leq 0.5)=$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $P(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-P(T \in[0,1])=1$
- $P(T \in[a, b])=b-a$
- ...
- How do we model the behavior of T ?

First try: A discrete approximation

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- $X=$ time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

Discrete approximation?

A Discrete Approximation

Probability Mass Function

A Discrete Approximation

Recall: Cumulative Distribution Function (CDF)

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

Probability Density Function - Intuition

$$
\begin{aligned}
& \text { Non-negativity: } f_{X}(x) \geq 0 \text { for all } x \in \mathbb{R} \\
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& F(b)-F(a)=P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{array}{r}
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
F(b)-F(a)=P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
\end{array}
$$

Probability Density Function - Intuition

What $f_{X}(x)$ measures: The local rate at which probability accumulates

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
F(b)-F(a)=P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

$$
P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)
$$

$$
\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)} 20
$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
\begin{aligned}
& F(b)-F(a)=P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0 \\
& P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y \frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y) \\
& \frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
\end{aligned}
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$

A Discrete Approximation

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,1)$

$$
f_{X}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

$$
F_{X}(x)=P(X \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$


```
X ~ Unif(0,1)
```


$$
f_{X}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

$$
F_{X}(x)=P(X \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$F(b)-F(a)=P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

PDF of Uniform RV

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

PDF of Uniform RV

Density \neq Probability

$f_{X}(x) \gg 1$ is possible!
$X \sim \operatorname{Unif}(0,0.5)$

PDF of Uniform RV

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
Therefore: $P(X \in[a, b])=F_{X}(b)-F_{X}(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\lim _{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \lim _{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.
- Introduction to continuous zoo

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
Proof follows same ideas as discrete case

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
Proofs follow same ideas as discrete case

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \mathrm{~d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Agenda

- Zoo of continuous random variables
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

Example. T ~ Unif(0,1)

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\mathbb{E}[T]=\underbrace{\frac{1}{2} 1^{2}=\frac{1}{2}}_{\text {Area of triangle }}
$$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x \\
& =\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= \\
& =\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
& \\
& =\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Uniform Density - Variance
$X \sim \operatorname{Unif}(a, b)$
$\mathbb{E}\left[X^{2}\right]=$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

Uniform Distribution Summary
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
F_{X}(y)=\left\{\begin{array}{cc}
\frac{0}{x-a} & x<a \\
1 & x \in[a, b] \\
\cdots>- &
\end{array}\right.
$$

$$
\mathbb{E}[X]=\frac{a+b}{2}
$$

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Agenda

- Zoo of continuous random variables
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection • Rate of radioactive decay
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event in one unit of time: Poisson distribution

$$
\begin{equation*}
P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!} \tag{Discrete}
\end{equation*}
$$

How long to wait until next event? Exponential density!
Let's define it and then derive it!

Exponential Density - Warmup

 $W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}$Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is $\mathbb{E}\left[Z_{t}\right]$ where $Z_{t}=\#$ occurrences of event per t units of time?

Exponential Density - Warmup

Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is the distribution of $Z_{t}=$ \# occurrences of event per t units of time?

$$
\begin{aligned}
& \mathbb{E}\left[Z_{t}\right]=t \lambda \\
& Z_{t} \text { is independent over disjoint intervals }
\end{aligned}
$$

$$
\text { So } Z_{t} \sim \operatorname{Poi}(t \lambda)
$$

The Exponential PDF/CDF

$$
W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently) Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!

- Let X be the time till the first event. We will compute $F_{X}(t)$ and $f_{X}(t)$
- We know $Z_{t} \sim \operatorname{Poi}(t \lambda)$ is the \# of events in the first t units of time, for $t \geq 0$.

The Exponential PDF/CDF

$W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}$

Assume expected \# of occurrences of an event per unit of time is λ (independently)
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $X \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{X}(t)$ and $f_{X}(t)$
- We know $Z_{t} \sim \operatorname{Poi}(t \lambda)$ be the \# of events in the first t units of time, for $t \geq 0$.
- $\quad P(X>t)=P($ no event in the first t units $)=P\left(Z_{t}=0\right)=e^{-t \lambda \frac{(t \lambda)^{0}}{0!}}=e^{-t \lambda}$
- $F_{X}(t)=P(X \leq t)=1-P(Y>t)=1-e^{-t \lambda}$
- $f_{X}(t)=\frac{d}{d t} F_{X}(t)=\lambda e^{-t \lambda}$

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

> CDF: For $y \geq 0$, $F_{X}(y)=1-e^{-\lambda y}$

Expectation

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
P(X>t)=e^{-t \lambda}
\end{gathered}
$$

Expectation

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x \\
& =\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \mathrm{~d} x \\
& =\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda}
\end{aligned}
$$

Somewhat complex calculation use integral by parts

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
P(X>t)=e^{-t \lambda}
\end{gathered}
$$

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

$$
\operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.
Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { CDF: For } y \geq 0, \\
& F_{X}(y)=1-e^{-\lambda y} \\
& \mathbb{E}[X]=\frac{1}{\lambda} \\
& \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

$$
P(X>s+t \mid X>s)=P(X>t) .
$$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when $s=0$.

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.
$P(X>t)=e^{-\lambda t}$
Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s=0$

Proof.

$P(X>s+t \mid X>s)=$

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

$P(X>t)=e^{-\lambda t}$
Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s=0$

Proof.

$$
\begin{aligned}
P(X>s+t \mid X>s) & =\frac{P(\{X>s+t\} \cap\{X>s\})}{P(X>s)} \\
& =\frac{P(X>s+t)}{P(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P(X>t)
\end{aligned}
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins .
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& P(10 \leq T \leq 20)=\int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} d x \\
& y=\frac{x}{10} \text { so } d y=\frac{d x}{10} \\
& P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins .
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& \text { so } F_{T}(t)=1-e^{-\frac{t}{10}} \\
& \begin{aligned}
P(10 \leq T \leq 20) & =F_{T}(20)-F_{T}(10) \\
& =1-e^{-\frac{20}{10}}-\left(1-e^{-\frac{10}{10}}\right)=e^{-1}-e^{-2}
\end{aligned}
\end{aligned}
$$

Agenda

- Zoo
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof of expectation is easy because density curve is symmetric around μ, $f_{X}(\mu-x)=f_{X}(\mu+x)$, but proof for variance requires integration of $e^{-x^{2} / 2}$ We will see next time why the normal distribution is (in some sense) the most important distribution.

The Normal Distribution
Aka a "Bell Curve" (imprecise name)

