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Foundations of Computing II
Lecture 15: Continuous RV
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Agenda

• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
• Introduction to continuous zoo
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Often we want to model experiments where the outcome is not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1𝑇 = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

𝑃 𝑇 ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 0.2 ≤ 𝑇 ≤ 0.5 =

0 10.50.2
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 𝑇 = 0.5 =

0 10.5



Bottom line

• This gives rise to a different type of random variable
• 𝑃 𝑇 = 𝑥 = 0 for all 𝑥 ∈ [0,1]
• Yet, somehow we want
– 𝑃 𝑇 ∈ [0,1] = 1
– 𝑃 𝑇 ∈ [𝑎, 𝑏] = 𝑏 − 𝑎
– …

• How do we model the behavior of 𝑇?
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First try:  A discrete approximation



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 𝑋 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1𝑋 = 0.71237131931129576…

Discrete approximation?
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Probability Mass Function
PMF

A Discrete Approximation
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Recall:  Cumulative Distribution Function (CDF)

11-1 0 1 2 3 -1 0 1 2 3

1/4
1/2

3/4

1

𝑝! 𝐹!

Probability Mass Function
PMF

Cumulative Distribution Function
CDF
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Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that 
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Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1
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Probability Density Function - Intuition

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥
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Probability Density Function - Intuition

𝑦

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

Density ≠ Probability

𝑓4 𝑦 ≠ 0 𝑃 𝑋 = 𝑦 = 0

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥
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Probability Density Function - Intuition

𝑦𝑦 −
𝜖
2

𝑦 +
𝜖
2

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= 3
:5;<

:7;<
𝑓4 𝑥 	d𝑥 ≈ 𝜖𝑓4(𝑦)

What 𝑓4(𝑥) measures: The local rate at which probability accumulates 

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥



𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓4 𝑦
𝜖𝑓4 𝑧

=
𝑓4 𝑦
𝑓4 𝑧 20

Probability Density Function - Intuition

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

= 2

𝑦 𝑧

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= 3
:5;<

:7;<
𝑓4 𝑥 	d𝑥 ≈ 𝜖𝑓4(𝑦)

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥



Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that
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Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= 3
:5;<

:7;<
𝑓4 𝑥 	d𝑥 ≈ 𝜖𝑓4(𝑦)

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓4 𝑦
𝜖𝑓4 𝑧

=
𝑓4 𝑦
𝑓4 𝑧

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥
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By the fundamental theorem of Calculus 𝑓! 𝑥 = "
"#
𝐹!(𝑥)



From Discrete to Continuous

Discrete Continuous
PMF/PDF 𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 𝑓! 𝑥 ≠ 𝑃 𝑋 = 𝑥 = 0

CDF 𝐹! 𝑥 = 5
$ % #

𝑝!(𝑡) 𝐹! 𝑥 = 7
&'

#
𝑓! 𝑡 𝑑𝑡

Normalization 5
#

𝑝! 𝑥 = 1 7
&'

'
𝑓! 𝑥 𝑑𝑥 = 1

Expectation 𝔼 𝑔 𝑋 =5
#

𝑔 𝑥 𝑝!(𝑥) 𝔼 𝑔 𝑋 = 7
&'

'
𝑔 𝑥 𝑓! 𝑥 𝑑𝑥
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PDF of Uniform RV

27
10

𝑓! 𝑥 = ;
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

0

1

𝑋 ∼ Unif(0,1) 𝐹4 𝑥 = 𝑃(𝑋 ≤ 𝑥) = =
0 𝑥 ≤ 0
𝑥 0 ≤ 𝑥 ≤ 1
1 1 ≤ 𝑥
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Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝜖𝑓4(𝑦)

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓4 𝑦
𝜖𝑓4 𝑧

=
𝑓4 𝑦
𝑓4 𝑧

𝐹 𝑏 − 𝐹 𝑎 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥

𝑋 ∼ Unif(0,1)
𝑓! 𝑥 = ;

1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

𝐹4 𝑥 = 𝑃(𝑋 ≤ 𝑥) = =
0 𝑥 ≤ 0
𝑥 0 ≤ 𝑥 ≤ 1
1 1 ≤ 𝑥



PDF of Uniform RV

29
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𝑓! 𝑥 = ;
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

3
56

76
𝑓4 𝑥 	d𝑥 = 3

A

B
𝑓4 𝑥 	d𝑥 = 1 ⋅ 1 = 1

0

1

𝑋 ∼ Unif(0,1) Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1



Probability of Event

30
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0

1

𝑋 ∼ Unif(0,1) 

𝑎 𝑏

𝑓! 𝑥 = ;
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥



Probability of Event

32
10

0

1

𝑋 ∼ Unif(0,1) 

𝑓! 𝑥 = ;
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓4 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫56
76𝑓4 𝑥 	d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 3
8

9
𝑓4 𝑥 	d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = 3
:

:
𝑓4 𝑥 	d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝜖𝑓4 𝑦 = 𝜖

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓4 𝑦
𝜖𝑓4 𝑧

=
𝑓4 𝑦
𝑓4 𝑧



PDF of Uniform RV

33
10

𝑓! 𝑥 =

0

𝑋 ∼ Unif(0,0.5) 

0.5



PDF of Uniform RV
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𝑓! 𝑥 = ;
2, 𝑥 ∈ [0,0.5]
0, 𝑥 ∉ [0,0.5]

3
56

76
𝑓4 𝑥 	d𝑥 = 3

A

B
𝑓4 𝑥 	d𝑥 = 2 ⋅ 0.5 = 1

0

2

𝑋 ∼ Unif(0,0.5) 

Density ≠ Probability

1

0.5

𝑓4 𝑥 ≫ 1 is possible!

Probability on [0,0.5]	accumulates at 
twice the rate compared to Unif(0,1)



PDF of Uniform RV

35
10

0

𝑋 ∼ Unif(0,0.5) 

0.5

𝑓! 𝑥 = ;
2, 𝑥 ∈ [0,0.5]
0, 𝑥 ∉ [0,0.5]



Uniform Distribution

36

𝑓! 𝑥 = E
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

3
56

76
𝑓4 𝑥 	d𝑥 = 𝑏 − 𝑎

1
𝑏 − 𝑎

= 1

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏) 

𝑎 𝑏



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥

38

By the fundamental theorem of Calculus 𝑓! 𝑥 = "
"#
𝐹!(𝑥)



From Discrete to Continuous

Discrete Continuous
PMF/PDF 𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 𝑓! 𝑥 ≠ 𝑃 𝑋 = 𝑥 = 0

CDF 𝐹! 𝑥 = 5
$ % #

𝑝!(𝑡) 𝐹! 𝑥 = 7
&'

#
𝑓! 𝑡 𝑑𝑡

Normalization 5
#

𝑝! 𝑥 = 1 7
&'

'
𝑓! 𝑥 𝑑𝑥 = 1

Expectation 𝔼 𝑔 𝑋 =5
#

𝑔 𝑥 𝑝!(𝑥) 𝔼 𝑔 𝑋 = 7
&'

'
𝑔 𝑥 𝑓! 𝑥 𝑑𝑥



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥

Therefore: 𝑃 𝑋 ∈ [𝑎, 𝑏] = 𝐹! 𝑏 − 𝐹!(𝑎) 

By the fundamental theorem of Calculus 𝑓! 𝑥 = "
"#
𝐹!(𝑥)

𝐹! is monotone increasing, since 𝑓! 𝑥 ≥ 0. That is 𝐹! 𝑐 ≤ 𝐹! 𝑑  for 𝑐 ≤ 𝑑

lim(→&'	𝐹! 𝑎 = 𝑃 𝑋 ≤ −∞ = 0 lim(→*'	𝐹! 𝑎 = 𝑃 𝑋 ≤ +∞ = 1



Agenda

• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
• Introduction to continuous zoo
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Expectation of a Continuous RV

43

Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼[𝑋] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] + 𝑐
Proof follows same 
ideas as discrete case



Expectation of a Continuous RV

44

Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼[𝑋] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] + 𝑐

Definition. The variance of a continuous RV 𝑋 is defined as

Var 𝑋 = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥 − 𝔼[𝑋] +	d𝑥 = 𝔼[𝑋+] − 𝔼[𝑋]+

Proofs follow same 
ideas as discrete case



Agenda

• Zoo of continuous random variables
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution
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Expectation of a Continuous RV

46

Definition.

𝔼[𝑋] = F
!"

#"
𝑓$ 𝑥 ⋅ 𝑥 d𝑥

𝑓% 𝑥 = K
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Example. 𝑇 ∼ Unif(0,1) 

100

1



Expectation of a Continuous RV

47

Definition.

𝔼[𝑋] = F
!"

#"
𝑓$ 𝑥 ⋅ 𝑥 d𝑥

𝑓% 𝑥 = K
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Example. 𝑇 ∼ Unif(0,1) 

100

1

𝑓% 𝑥 ⋅ 𝑥 = K
𝑥, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1] 𝔼[𝑇] =

1
2
1+ =

1
2

Area of triangle
100

1



Uniform Density – Expectation 

48

𝑓! 𝑥 = E
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏) 

𝔼[𝑋] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥	d𝑥

=
1

𝑏 − 𝑎
7
(

,
𝑥	d𝑥 =

1
𝑏 − 𝑎

V
𝑥+

2
(

,

=
1

𝑏 − 𝑎
𝑏+ − 𝑎+

2

=
(𝑏 − 𝑎)(𝑎 + 𝑏)

2(𝑏 − 𝑎)
=
𝑎 + 𝑏
2



Uniform Density – Variance 

49

𝑓! 𝑥 = E
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏) 

𝔼[𝑋+] =



Uniform Density – Variance 

50

𝑓! 𝑥 = E
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏) 

𝔼[𝑋+] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥+	d𝑥

=
1

𝑏 − 𝑎
7
(

,
𝑥+	d𝑥 =

1
𝑏 − 𝑎

V
𝑥-

3
(

,

=
𝑏- − 𝑎-

3(𝑏 − 𝑎)

=
(𝑏 − 𝑎)(𝑏+ + 𝑎𝑏 + 𝑎+)

3(𝑏 − 𝑎)
=
𝑏+ + 𝑎𝑏 + 𝑎+

3



Uniform Density – Variance 

51

𝑋 ∼ Unif(𝑎, 𝑏) 
𝔼[𝑋<] =

𝑏< + 𝑎𝑏 + 𝑎<

3
𝔼[𝑋] =

𝑎 + 𝑏
2

Var 𝑋 = 𝔼[𝑋+] − 𝔼[𝑋]+



Uniform Density – Variance 

52

𝑋 ∼ Unif(𝑎, 𝑏) 
𝔼[𝑋<] =

𝑏< + 𝑎𝑏 + 𝑎<

3
𝔼[𝑋] =

𝑎 + 𝑏
2

Var 𝑋 = 𝔼[𝑋+] − 𝔼[𝑋]+

=
𝑏+ + 𝑎𝑏 + 𝑎+

3
−
𝑎+ + 2𝑎𝑏 + 𝑏+

4

=
4𝑏+ + 4𝑎𝑏 + 4𝑎+

12
−
3𝑎+ + 6𝑎𝑏 + 3𝑏+

12

=
𝑏+ − 2𝑎𝑏 + 𝑎+

12
=

𝑏 − 𝑎 +

12



Uniform Distribution Summary

53

𝑓! 𝑥 = E
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏) 

𝑎 𝑏

𝐹4 𝑦 =
0 𝑥 < 𝑎

𝑥 − 𝑎
𝑏 − 𝑎

𝑥 ∈ [𝑎, 𝑏]

1 𝑥 > 𝑏

𝔼 𝑋 =
𝑎 + 𝑏
2

Var 𝑋 =
𝑏 − 𝑎 <

12



Agenda

• Zoo of continuous random variables
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution

54



Exponential Density

55

Assume expected # of occurrences of an event per unit of time is 𝜆 (independently)

• Cars going through intersection
• Number of lightning strikes
• Requests to web server
• Patients admitted to ER

Numbers of occurrences of event in one unit of time: Poisson 
distribution

𝑃 𝑊 = 𝑖 = 𝑒"%
𝜆&

𝑖!
(Discrete)

How long to wait until next event? Exponential density!

Let’s define it and then derive it!

• Rate of radioactive decay



Exponential Density - Warmup
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𝑊 ∼ 𝑃𝑜𝑖 𝜆 ⇒ 𝑃 𝑊 = 𝑖 = 𝑒!"
𝜆#

𝑖!

Assume expected # of occurrences of an event per unit of time is 𝜆 (independently)

What is 𝔼 𝑍O 	where 𝑍O= # occurrences of event per 𝑡 units of time?



Exponential Density - Warmup

57

𝑊 ∼ 𝑃𝑜𝑖 𝜆 ⇒ 𝑃 𝑊 = 𝑖 = 𝑒!"
𝜆#

𝑖!

Assume expected # of occurrences of an event per unit of time is 𝜆 (independently)

What is the distribution of 𝑍O= # occurrences of event per 𝑡 units of time?

𝔼 𝑍O = 𝑡𝜆

𝑍O is independent over disjoint intervals

So 𝑍O ∼ 𝑃𝑜𝑖(𝑡𝜆)



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is 𝜆 (independently)

Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• Let 𝑋 be the time till the first event. We will compute 𝐹4 𝑡  and 𝑓4 𝑡  

• We know 𝑍O~𝑃𝑜𝑖 𝑡𝜆  is the # of events in the first 𝑡 units of time, for 𝑡 ≥ 0.

𝑊 ∼ 𝑃𝑜𝑖 𝜆 ⇒ 𝑃 𝑊 = 𝑖 = 𝑒!"
𝜆#

𝑖!



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is 𝜆 (independently)

Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0,∞], unlike Poisson with range {0,1,2, … }

• Let 𝑋~𝐸𝑥𝑝 𝜆  be the time till the first event. We will compute 𝐹4 𝑡  and 𝑓4 𝑡  

• We know 𝑍O~𝑃𝑜𝑖 𝑡𝜆  be the # of events in the first 𝑡 units of time, for 𝑡 ≥ 0.

• 	𝑃 𝑋 > 𝑡 = 𝑃 no	event	in	the	cirst	𝑡	units = 𝑃 𝑍O = 0 = 𝑒5OP (OP)
!

A!
= 𝑒5OP

•  𝐹4 𝑡 = 𝑃(𝑋 ≤ 𝑡) = 1 − 𝑃 𝑌 > 𝑡 = 1 − 𝑒5OP

•  𝑓4 𝑡 = T
TO
𝐹4 𝑡 = 𝜆𝑒5OP

𝑊 ∼ 𝑃𝑜𝑖 𝜆 ⇒ 𝑃 𝑊 = 𝑖 = 𝑒!"
𝜆#

𝑖!



Exponential Distribution

Definition. An exponential random variable 𝑋	with parameter 𝜆 ≥ 0 is 
follows the exponential density

 𝑓! 𝑥 = ;𝜆𝑒
&8# 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0, 
𝐹! 𝑦 = 1 − 𝑒&89

We write 𝑋 ∼ Exp 𝜆  and say 𝑋	that follows the exponential distribution.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

𝜆 = 2
𝜆 = 1.5

𝜆 = 1

𝜆 = 0.5

𝑃 𝑋 > 𝑡 = 𝑒5OP



Expectation
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𝑓! 𝑥 = ;𝜆𝑒
&8# 𝑥 ≥ 0
0 𝑥 < 0

𝔼[𝑋] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥	d𝑥

𝑃 𝑋 > 𝑡 = 𝑒5OP



Expectation

62

𝑓! 𝑥 = ;𝜆𝑒
&8# 𝑥 ≥ 0
0 𝑥 < 0

𝔼[𝑋] = 7
&'

*'
𝑓! 𝑥 ⋅ 𝑥	d𝑥

= 7
?

*'
𝜆𝑒&8# ⋅ 𝑥	d𝑥

= ^−(𝑥 +
1
𝜆
)𝑒&8#

?

'	

=
1
𝜆

Var 𝑋 =
1
𝜆+

𝔼[𝑋] =
1
𝜆

Somewhat complex calculation 
use integral by parts 

𝑃 𝑋 > 𝑡 = 𝑒5OP



Exponential Distribution

Definition. An exponential random variable 𝑋	with parameter 𝜆 ≥ 0 is 
follows the exponential density

 𝑓! 𝑥 = ;𝜆𝑒
&8# 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0, 
𝐹! 𝑦 = 1 − 𝑒&89

We write 𝑋 ∼ Exp 𝜆  and say 𝑋	that follows the exponential distribution.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

𝜆 = 2
𝜆 = 1.5

𝜆 = 1

𝜆 = 0.5

𝑃 𝑋 > 𝑡 = 𝑒5OP

𝔼 𝑋 =
1
𝜆

Var 𝑋 =
1
𝜆+
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Memorylessness

Definition. A random variable is memoryless if for all 𝑠, 𝑡 > 0,

𝑃 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠) = 𝑃 𝑋 > 𝑡 .

65

Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

Assuming an exponential distribution, if you’ve waited 𝑠 minutes, 
The probability of waiting 𝑡 more is exactly same as when  𝑠 = 0.



Memorylessness of Exponential

66

Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

𝑃 𝑋 > 𝑠 + 𝑡	 𝑋 > 𝑠) =

Proof.

Proof that assuming exp distr, if you’ve waited 𝑠 
minutes, prob of waiting 𝑡 more is exactly same 
as when  𝑠 = 0	

𝑃 𝑋 > 𝑡 = 𝑒5PO



Memorylessness of Exponential

67

Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

𝑃 𝑋 > 𝑠 + 𝑡	 𝑋 > 𝑠) =
𝑃 𝑋 > 𝑠 + 𝑡 ∩ 𝑋 > 𝑠

𝑃(𝑋 > 𝑠)

=
𝑃 𝑋 > 𝑠 + 𝑡
𝑃(𝑋 > 𝑠)

=
𝑒&8(A*$)

𝑒&8A
= 𝑒&8$ = 𝑃(𝑋 > 𝑡)

Proof.

Proof that assuming exp distr, if you’ve waited 𝑠 
minutes, prob of waiting 𝑡 more is exactly same 
as when  𝑠 = 0	

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

𝑃 𝑋 > 𝑡 = 𝑒5PO



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?

𝑇	~	𝐸𝑥𝑝(
1
10
)

𝑃 10 ≤ 𝑇 ≤ 20 = 3
BA

<A 1
10
𝑒5

X
BA	𝑑𝑥

𝑦 = X
BA

 so 𝑑𝑦 = TX
BA

𝑃 10 ≤ 𝑇 ≤ 20 = 3
B

<
𝑒5:	𝑑𝑦 = −𝑒5: i

B

<
= 𝑒5B − 𝑒5<



Example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins?

𝑇	~	𝐸𝑥𝑝(
1
10
)

so 𝐹Y 𝑡 = 1 − 𝑒5
"
#!

𝑃 10 ≤ 𝑇 ≤ 20 = 𝐹Y 20 − 𝐹Y(10)

                                = 1 − 𝑒5
$!
#! − 1 − 𝑒5

#!
#! = 𝑒5B − 𝑒5<



Agenda

• Zoo
– Uniform Distribution 
– Exponential Distribution
– Normal Distribution

71



The Normal Distribution

72

Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0	has density

 𝑓! 𝑥 = C
+DE

𝑒&
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎<). 

Carl Friedrich 
Gauss

𝒩(0, 1).



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0	has density

 𝑓! 𝑥 = C
+DE

𝑒&
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎<). 

Carl Friedrich 
Gauss

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎+ , then 𝔼[𝑋] = 𝜇, and Var 𝑋 = 𝜎+



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0	has density

 𝑓! 𝑥 = C
+DE

𝑒&
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎<). 

Carl Friedrich 
Gauss

We will see next time why the normal distribution is (in some sense) the most 
important distribution. 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎+ , then 𝔼[𝑋] = 𝜇, and Var 𝑋 = 𝜎+

Proof of expectation is easy because density curve is symmetric around 𝜇,
                    𝑓4 𝜇 − 𝑥 = 𝑓4(𝜇 + 𝑥), but proof for variance requires integration of 𝑒5X$/<



The Normal Distribution
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18

𝜇 = 0, 𝜎< = 3

𝜇 = 0,
 𝜎< = 8

𝜇 = −7,
 𝜎< = 6

𝜇 = 7,
 𝜎< = 1

Aka a “Bell Curve” (imprecise name)


