CSE 312 Foundations of Computing II

Lecture 15: Continuous RV

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.
- Introduction to continuous zoo

Often we want to model experiments where the outcome is not discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Bottom line

- . . .

- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want
 - $P(T \in [0,1]) = 1$
 - $-P(T \in [a, b]) = b a$
- How do we model the behavior of *T*?

First try: A discrete approximation

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *X* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.

A Discrete Approximation

Probability Mass Function PMF

A Discrete Approximation

Recall: Cumulative Distribution Function (CDF)

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$F(b) - F(a) = P(a \le X \le b) = \int_a^b f_X(x) \, \mathrm{d}x$$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$F(b) - F(a) = P(a \le X \le b) = \int_{a}^{b} f_X(x) \, dx$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, \mathrm{d}x = 0$$

What $f_X(x)$ measures: The local *rate* at which probability accumulates

19

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$F(b) - F(a) = P(a \le X \le b) = \int_{a}^{b} f_{X}(x) dx$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_{X}(x) dx = 0$$

$$P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_{X}(x) dx \approx \epsilon f_{X}(y)$$

$$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)} = \frac{f_{X}(y)}{f_{X}(z)}$$

21

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx}F_X(x)$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$

A Discrete Approximation

PDF of Uniform RV

$X \sim \text{Unif}(0,1)$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ **Normalization:** $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $f_X(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$ 1 $\int_{-\infty}^{+\infty} f_X(x) \, \mathrm{d}x = \int_{0}^{1} f_X(x) \, \mathrm{d}x = 1 \cdot 1 = 1$ 0 29

Probability of Event

Probability of Event

PDF of Uniform RV

$X \sim \text{Unif}(0,0.5)$

PDF of Uniform RV

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx} F_X(x)$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx}F_X(x)$

Therefore: $P(X \in [a, b]) = F_X(b) - F_X(a)$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

 $\lim_{a \to -\infty} F_X(a) = P(X \le -\infty) = 0 \quad \lim_{a \to +\infty} F_X(a) = P(X \le +\infty) = 1$

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.
- Introduction to continuous zoo

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$

Fact. $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$

Proof follows same ideas as discrete case

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$ **Fact.** $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$ Proofs follow same ideas as discrete case **Definition.** The **variance** of a continuous RV *X* is defined as $Var(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot (x - \mathbb{E}[X])^2 \, dx = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Agenda

• Zoo of continuous random variables

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

Example. *T* ~ Unif(0,1)

Definition.
$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

Expectation of a Continuous RV

0

0

1

Area of triangle

Definition.

Uniform Density – Expectation

 $X \sim \text{Unif}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$E[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

48

 $X \sim \text{Unif}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

 $\mathbb{E}[X^2] =$

 $X \sim \text{Unif}(a, b)$

$$\mathbb{E}[X^2] = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, dx$$

= $\frac{1}{b-a} \int_a^b x^2 \, dx = \frac{1}{b-a} \left(\frac{x^3}{3}\right) \Big|_a^b = \frac{b^3 - a^3}{3(b-a)}$
= $\frac{(b-a)(b^2 + ab + a^2)}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$

 $f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$

 $X \sim \text{Unif}(a, b)$

 $\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

$$\mathbb{E}[X^{2}] = \frac{b^{2} + ab + a^{2}}{3} \qquad \mathbb{E}[X] = \frac{a+b}{2}$$

$$X \sim \text{Unif}(a, b)$$

$$\mathbb{E}[X^2] = \frac{b^2 + ab + a^2}{3} \qquad \mathbb{E}[X] = \frac{a+b}{2}$$

$$Var(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$
$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$
$$= \frac{4b^{2} + 4ab + 4a^{2}}{12} - \frac{3a^{2} + 6ab + 3b^{2}}{12}$$
$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

Agenda

• Zoo of continuous random variables

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected # of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection Rate of radioactive decay •
- Number of lightning strikes •
- Requests to web server ٠
- Patients admitted to ER

Numbers of occurrences of event in one unit of time: Poisson distribution

$$P(W = i) = e^{-\lambda} \frac{\lambda^{\iota}}{i!}$$
 (Discrete)

How long to wait until next event? Exponential density!

Let's define it and then derive it!

Exponential Density - Warmup

$$W \sim Poi(\lambda) \Rightarrow P(W = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Assume expected # of occurrences of an event per unit of time is λ (independently)

What is $\mathbb{E}[Z_t]$ where $Z_t = #$ occurrences of event per t units of time?

Exponential Density - Warmup

$$W \sim Poi(\lambda) \Rightarrow P(W = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Assume expected # of occurrences of an event per unit of time is λ (independently)

What is the distribution of Z_t = # occurrences of event per t units of time?

 $\mathbb{E}[Z_t] = t\lambda$

 Z_t is independent over disjoint intervals

So $Z_t \sim Poi(t\lambda)$

$$W \sim Poi(\lambda) \Rightarrow P(W = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

The Exponential PDF/CDF

Assume expected # of occurrences of an event per unit of time is λ (independently) Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!

- Let X be the time till the first event. We will compute $F_X(t)$ and $f_X(t)$
- We know $Z_t \sim Poi(t\lambda)$ is the # of events in the first t units of time, for $t \ge 0$.

$$W \sim Poi(\lambda) \Rightarrow P(W = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

The Exponential PDF/CDF

Assume expected # of occurrences of an event per unit of time is λ (independently) Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0, 1, 2, ...\}$
- Let $X \sim Exp(\lambda)$ be the time till the first event. We will compute $F_X(t)$ and $f_X(t)$
- We know $Z_t \sim Poi(t\lambda)$ be the # of events in the first t units of time, for $t \ge 0$.
- $P(X > t) = P(\text{no event in the first } t \text{ units}) = P(Z_t = 0) = e^{-t\lambda} \frac{(t\lambda)^0}{0!} = e^{-t\lambda}$
- $F_X(t) = P(X \le t) = 1 P(Y > t) = 1 e^{-t\lambda}$
- $f_X(t) = \frac{d}{dt}F_X(t) = \lambda e^{-t\lambda}$

 $P(X > t) = e^{-t\lambda}$

Exponential Distribution

Definition. An **exponential random variable** *X* with parameter $\lambda \ge 0$ is follows the exponential density

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

We write $X \sim \text{Exp}(\lambda)$ and say X that follows the exponential distribution.

Expectation

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$P(X > t) = e^{-t\lambda}$$

Expectation

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$
$$= \int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \, dx$$
$$= \left(-(x + \frac{1}{\lambda})e^{-\lambda x} \right) \Big|_{0}^{\infty} = \frac{1}{\lambda}$$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$P(X > t) = e^{-t\lambda}$$
$$\mathbb{E}[X] = \frac{1}{\lambda}$$
$$Var(X) = \frac{1}{\lambda^2}$$

62

$P(X > t) = e^{-t\lambda}$

Exponential Distribution

We write $X \sim \text{Exp}(\lambda)$ and say X that follows the exponential distribution.

Definition. An **exponential random variable** *X* with parameter $\lambda \ge 0$ is follows the exponential density

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Memorylessness

Definition. A random variable is **memoryless** if for all s, t > 0, P(X > s + t | X > s) = P(X > t).

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when s = 0.

Memorylessness of Exponential

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Proof.

P(X > s + t | X > s) =

 $P(X > t) = e^{-\lambda t}$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when s = 0

Memorylessness of Exponential

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

 $P(X > t) = e^{-\lambda t}$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when s = 0

Proof.

$$P(X > s + t \mid X > s) = \frac{P(\{X > s + t\} \cap \{X > s\})}{P(X > s)}$$
$$= \frac{P(X > s + t)}{P(X > s)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$T \sim Exp(\frac{1}{10})$$

$$P(10 \le T \le 20) = \int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} dx$$

$$y = \frac{x}{10} \text{ so } dy = \frac{dx}{10}$$

$$P(10 \le T \le 20) = \int_{1}^{2} e^{-y} dy = -e^{-y} \Big|_{1}^{2} = e^{-1} - e^{-2}$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$T \sim Exp(\frac{1}{10})$$

so $F_T(t) = 1 - e^{-\frac{t}{10}}$
 $P(10 \le T \le 20) = F_T(20) - F_T(10)$
 $= 1 - e^{-\frac{20}{10}} - (1 - e^{-\frac{10}{10}}) = e^{-1} - e^{-2}$

Agenda

- Zoo
 - Uniform Distribution
 - Exponential Distribution
 - Normal Distribution

Definition. A Gaussian (or <u>normal</u>) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \ge 0$ has density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Carl Friedrich Gauss

Definition. A Gaussian (or <u>normal</u>) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \ge 0$ has density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Fact. If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X] = \mu$, and $Var(X) = \sigma^2$

Carl Friedrich Gauss

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \ge 0$ has density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Fact. If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X] = \mu$, and $Var(X) = \sigma^2$

Proof of expectation is easy because density curve is symmetric around μ , $f_X(\mu - x) = f_X(\mu + x)$, but proof for variance requires integration of $e^{-x^2/2}$ We will see next time why the normal distribution is (in some sense) the most important distribution. 74

Aka a "Bell Curve" (imprecise name)

