
CSE 312

Foundations of Computing II
17: Normal Distribution & Central Limit Theorem
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𝑓(𝑥)

Review Continuous RVs
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Probability Density Function (PDF). 
𝑓:ℝ → ℝ s.t.
• 𝑓 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

• ∫!"
#"𝑓 𝑥 	d𝑥 = 1

Cumulative Distribution Function (CDF). 

𝐹 𝑦 = 0
!"

$
𝑓(𝑥)	d𝑥

Theorem. 𝑓 𝑥 = %&(()
%(

𝑦

Density ≠ Probability ! 𝐹! 𝑦 = 𝑃 𝑋 ≤ 𝑦

= 1Area



Review Continuous RVs
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𝑓3(𝑥)

𝑎 𝑏

𝑃 𝑋 ∈ [𝑎, 𝑏] = *
!

"
𝑓# 𝑥 d𝑥 = 𝐹# 𝑏 − 𝐹#(𝑎)



Review Uniform Distribution
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𝑓3 𝑥 = (
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏) 

𝑎 𝑏

𝐹! 𝑦 =
0 𝑥 < 𝑎

𝑥 − 𝑎
𝑏 − 𝑎

𝑥 ∈ [𝑎, 𝑏]

1 𝑥 > 𝑏

𝔼 𝑋 =
𝑎 + 𝑏
2

Var 𝑋 =
𝑏 − 𝑎 "
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Review Exponential Distribution

Definition. An exponential random variable 𝑋	with parameter 𝜆 ≥ 0 is 
follows the exponential density

 𝑓3 𝑥 = <𝜆𝑒
456 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0, 
𝐹3 𝑦 = 1 − 𝑒457

We write 𝑋 ∼ Exp 𝜆  and say 𝑋	that follows the exponential distribution.
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Expectation
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𝑓3 𝑥 = <𝜆𝑒
456 𝑥 ≥ 0
0 𝑥 < 0

𝔼[𝑋] = B
4>

?>
𝑓3 𝑥 ⋅ 𝑥	d𝑥

= B
@

?>
𝜆𝑒456 ⋅ 𝑥	d𝑥

= E−(𝑥 +
1
𝜆
)𝑒456

@

>	

=
1
𝜆

Var 𝑋 =
1
𝜆A

𝔼[𝑋] =
1
𝜆

Using integration by parts 

𝑃 𝑋 > 𝑡 = 𝑒#$%



Exponential Distribution

Definition. An exponential random variable 𝑋	with parameter 𝜆 ≥ 0 is 
follows the exponential density

 𝑓3 𝑥 = <𝜆𝑒
456 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0, 
𝐹3 𝑦 = 1 − 𝑒457

We write 𝑋 ∼ Exp 𝜆  and say 𝑋	that follows the exponential distribution.
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𝑃 𝑋 > 𝑡 = 𝑒#$%

𝔼 𝑋 =
1
𝜆

Var 𝑋 =
1
𝜆A



Memorylessness

Definition. A random variable is memoryless if for all 𝑠, 𝑡 > 0,

𝑃 𝑋 > 𝑠 + 𝑡	 𝑋 > 𝑠) = 𝑃 𝑋 > 𝑡 .
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Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

Assuming an exponential distribution, if you’ve waited 𝑠 minutes, 
The probability of waiting 𝑡 more is exactly same as when  𝑠 = 0.



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎A ≥ 0	has density

 𝑓3 𝑥 = B
ACD

𝑒4
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎"). 

Carl Friedrich 
Gauss

𝒩(0, 1). No closed form expression for CDF…



The Normal Distribution.              𝑋 ∼ 𝒩(𝜇, 𝜎$) 
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Definition. A Gaussian (or normal) random variable 𝑋	with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0	has density

 𝑓3 𝑥 = B
ACD

𝑒4
!"# $

$%$

Carl Friedrich 
Gauss

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎$ , then 𝔼[𝑋] = 𝜇, and Var 𝑋 = 𝜎$

Proof of expectation is easy because density curve is symmetric around 𝜇,
                    𝑓! 𝜇 − 𝑥 = 𝑓!(𝜇 + 𝑥), but proof for variance requires integration of 𝑒#&!/"



The Normal Distribution
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18

𝜇 = 0, 
𝜎" = 3

𝜇 = 0,
 𝜎" = 8

𝜇 = −7,
 𝜎" = 6

𝜇 = 7,
 𝜎" = 1

Aka a “Bell Curve” (imprecise name)



Standard normal distribution
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Standard (unit) normal = 𝒩 0, 1

CDF. Φ 𝑧 = 𝑃 𝑍 ≤ 𝑧 = B
AC ∫4>

E 𝑒46$/Ad𝑥	 for 𝑍 ∼ 𝒩 0, 1  

Note: Φ 𝑧 	has no closed form – generally given via tables 



Table of Standard Cumulative Normal Density 𝒩 0, 1
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𝑃 𝑍 ≤ 0.98 = Φ 0.98 ≈ 0.8365

𝑃 𝑍 ≤ 1 = Φ 1.00 ≈ 0.84134



The Standard Normal CDF

What is the probability that a standard Normal is within one 
standard deviation of its mean?

𝑃 𝑍 ≤ 1 = Φ 1.00 ≈ 0.84

𝑃 −1 ≤ 𝑍 ≤ 1 =



Important facts about normal distributions

Fact:  Normal distributions stay normal under shifting and scaling.
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Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎A , then 34G
D
∼ 𝒩 0, 1 	



Closure of normal distribution – Under Shifting and Scaling

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎A , then 34G
D
∼ 𝒩 0, 1 	
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Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎A , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎A𝜎A

Mean and variance follow from properties you know!   The fact that 𝑌 is still 
normal is not obvious, but not too difficult



Closure of normal distribution – Under Shifting and Scaling
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If 𝑋 ∼ 𝒩 𝜇, 𝜎! , then  "	$%
&

∼ 𝒩(0, 1)

Therefore, 

𝐹" 𝑧 = 𝑃 𝑋 ≤ 𝑧 = 𝑃
𝑋 − 𝜇
𝜎 ≤

𝑧 − 𝜇
𝜎 = Φ

𝑧 − 𝜇
𝜎

And can look up the value in the standard normal table.



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 2A .  

25

𝑃 𝑋 ≤ 1.2 =



Table of Standard Cumulative Normal Density
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Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 2A .  
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𝑃 𝑋 ≤ 1.2 = 𝑃
𝑋 − 0.4

2
≤
1.2 − 0.4

2

= 𝑃
𝑋 − 0.4

2
≤ 0.4

∼ 𝒩 0, 1

= Φ(0.4) ≈ 0.6554



Example

Let 𝑋 ∼ 𝒩 3, 16 .  

28

𝑃 2 < 𝑋 < 5  =



Table of Standard Cumulative Normal Density
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Example

Let 𝑋 ∼ 𝒩 3, 16 .  

30

𝑃 2 < 𝑋 < 5 = 𝑃
2	 − 3
4

<
𝑋 − 3
4

<
5	 − 3
4

= 𝑃 −
1
4
< 𝑍 <

1
2

= Φ
1
2
	− Φ −

1
4

≈ 0.29017= Φ
1
2
	− 1 − 	Φ

1
4



Summary so far

• Normal distributions stay normal under shifting and scaling.

• To “standardize” a normal random variable 𝑋 ∼ 𝒩 𝜇, 𝜎A , you 
subtract the mean and divide by the standard deviation, i.e.,

3	4G
D

∼ 𝒩(0, 1)

• This allows you to use the standard normal tables (showing Φ 𝑧 =
𝑃 𝑍 ≤ 𝑧 	 for 𝑍 ∼ 𝒩 0, 1 ) to do calculations for any normal 
distribution.
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Another important property: closure under addition

Fact. If 𝑋 ∼ 𝒩 𝜇3 , 𝜎3A , Y ∼ 𝒩 𝜇H , 𝜎HA  (both independent normal RV) 
then a𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩 𝑎𝜇3 + 𝑏𝜇H + 𝑐, 𝑎A𝜎3A + 𝑏A𝜎HA

Note: The special thing is that the sum of normal RVs is still a normal RV.
 The values of the expectation and variance are not surprising. 

Why not surprising?
• Linearity of expectation (always true) 
• When 𝑋 and 𝑌 are independent, Var 𝑎𝑋 + 𝑏𝑌 = 𝑎"Var 𝑋 + 𝑏"Var(𝑌)	



Normal Distribution Paranormal Distribution



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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Normal Distributions EVERYWHERE – why?

35

Neuron Activity

S&P 500 Returns after Elections

Vegetables

Examples from: 
https://galtonboard.com/probabilityexamplesinlife



Sums of i.i.d. RVs look normal!
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𝑋B, … , 𝑋I i.i.d. with expectation 𝜇 and variance 𝜎A

i.i.d. = independent and identically distributed

Consider 𝑆I = 𝑋B +⋯+ 𝑋I

𝔼[𝑆I] =

Var(𝑆I) =

𝔼[𝑋B] + ⋯+ 𝔼[𝑋I] = 𝑛𝜇

Var 𝑋B +⋯+ Var 𝑋I = 𝑛𝜎A

Empirical observation:
               𝑆'  looks like a normal RV as 𝑛	grows. 



Example:  Sum of 𝑛 i.i.d. Exp(1) random variables

37



Example: avg of
uniform r.v.s
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CLT : Avg of some
other weird i.i.d. r.v.s
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Suppose that what we see in nature results from combining 
(summing) many independent random observations…
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Then distribution might look normal.
e.g. Height distribution resembles 
Gaussian.

R.A.Fisher (1918) observed that the 
height is likely the outcome of the 
sum of many independent random 
parameters, i.e., can written as

 𝑋 = 𝑋( +⋯+ 𝑋) 



Sums of i.i.d. RVs
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𝑋B, … , 𝑋I i.i.d. with expectation 𝜇 and variance 𝜎A

i.i.d. = independent and identically distributed

Define 𝑆I = 𝑋B +⋯+ 𝑋I

𝔼[𝑆I] =

Var(𝑆I) =

𝔼[𝑋B] + ⋯+ 𝔼[𝑋I] = 𝑛𝜇

Var 𝑋B +⋯+ Var 𝑋I = 𝑛𝜎A



Central Limit Theorem
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𝑋B, … , 𝑋I i.i.d., each with expectation 𝜇 and variance 𝜎A

Define 𝑆I = 𝑋B +⋯+ 𝑋I and

𝑌I =
𝑆I − 𝑛𝜇
𝜎 𝑛

𝔼[𝑌I] =

Var(𝑌I) =

1
𝜎 𝑛

𝔼[𝑆I] − 𝑛𝜇 =
1

𝜎 𝑛
𝑛𝜇 − 𝑛𝜇 = 0

1
𝜎A𝑛

Var 𝑆I − 𝑛𝜇 =
Var(𝑆I)
𝜎A𝑛

=
𝜎A𝑛
𝜎A𝑛

= 1

𝔼[𝑆!] =

Var(𝑆!) =

𝔼[𝑋"] + ⋯+ 𝔼[𝑋!] = 𝑛𝜇

Var 𝑋* +⋯+ Var 𝑋+ = 𝑛𝜎#



Central Limit Theorem
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𝑋B, … , 𝑋I i.i.d., each with expectation 𝜇 and variance 𝜎A

Define 𝑆I = 𝑋B +⋯+ 𝑋I , 𝑌I =
𝑆I − 𝑛𝜇
𝜎 𝑛

Then distribution of  𝑌' =
(!$'%
& '

    converges to that of a 

normal distribution with mean 0 and variance 1 as 𝑛 → ∞.



Central Limit Theorem

44

Theorem. (Central Limit Theorem) The CDF of 𝑌I converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
I→>

𝑃 𝑌I ≤ 𝑦 =
1
2𝜋

B
4>

7
𝑒46$/Ad𝑥

𝑌I =
𝑋B +⋯+ 𝑋I − 𝑛𝜇

𝜎 𝑛



Central Limit Theorem
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Theorem. (Central Limit Theorem) The CDF of 𝑌I converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
I→>

𝑃 𝑌I ≤ 𝑦 =
1
2𝜋

B
4>

7
𝑒46$/Ad𝑥

𝑌I =
𝑋B +⋯+ 𝑋I − 𝑛𝜇

𝜎 𝑛

Also stated as:
•  lim

I→>
𝑌I → 𝒩(0,1)

•  lim
I→>

B
I
∑OPBI 𝑋O → 𝒩 𝜇, D

$

I
 for 𝜇 = 𝔼[𝑋O] and 𝜎A = Var 𝑋O



CLT application

• You buy lightbulbs that burn out according to an exponential 
distribution with parameter 𝜆 = 1.8	lightbulbs per year. 

• You buy a pack of 10 (independent) light bulbs. What is the 
probability that your 10-pack lasts at least 5 years? 
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Table of Standard Cumulative Normal Density

47



Summary Central Limit Theorem
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𝑋B, … , 𝑋I i.i.d., each with expectation 𝜇 and variance 𝜎A

Define 𝑺𝒏 = 𝑿𝟏 +⋯+ 𝑿𝒏 and   n𝑿 = 𝟏
𝒏
∑𝒊P𝟏𝒏 𝑿𝒊.	 and 𝒀𝒏 =

𝑺𝒏 − 𝒏𝝁
𝝈 𝒏

mean

variance

CLT:



Outline of CLT steps – extra step if random variables are discrete.

• Write the event you are interested in, in terms of a sum of 
i.i.d. random variables.

• Normalize RV to have mean 0 and standard deviation 1.
• Write event in terms of Φ, the CDF of a 𝒩 0,1 .
• Look up in table.
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• Write the event you are interested in, in terms of a sum of 
i.i.d. random variables.

• Apply continuity correction if RVs are discrete (see 
tomorrow’s section and Tsun Section 5.7.4)

• Normalize RV to have mean 0 and standard deviation 1.
• Write event in terms of Φ, the CDF of a 𝒩 0,1 .
• Look up in table.
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Outline of CLT steps – extra step if random variables are discrete.



Example – How Many Standard Deviations Away?
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎A .  

𝑃 𝑋 − 𝜇 < 𝑘𝜎 = 𝑃
𝑋 − 𝜇
𝜎

< 𝑘 =

= 𝑃 −𝑘 <
𝑋 − 𝜇
𝜎

< 𝑘 = Φ 𝑘 − Φ(−𝑘)

e.g. 𝑘 = 1:   68%
       𝑘 = 2:   95% 
	 𝑘 = 3:   99%  


