CSE 312
Foundations of Computing II
18: Finish Polling, Joint Distributions

Agenda

- CLT and Polling
- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Analogues for continuous distributions
- LOTUS for joint distns

Central Limit Theorem

$$
\begin{aligned}
& \mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \mu \\
& \operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}
\end{aligned}
$$

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}

Define $S_{n}=X_{1}+\cdots+X_{n}$,

$$
Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}
$$

Then distribution of $Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}$ converges to that of a normal distribution with mean 0 and variance 1 as $n \rightarrow \infty$.

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) Suppose that X_{1}, \ldots, X_{n} are i.i.d. with $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$ The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Other versions:

- $X_{1}+\cdots+X_{n}$ approximately $\mathcal{N}\left(n \mu, n \sigma^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$

Outline of CLT steps

- Write the event you are interested in, in terms of a sum of i.i.d. random variables.
- Normalize RV to have mean 0 and standard deviation 1.
- Write event in terms of Φ, the CDF of a $\mathcal{N}(0,1)$.
- Look up in table.

Outline of CLT steps - extra step if random variables are discrete.

- Write the event you are interested in, in terms of a sum of i.i.d. random variables.
- Apply continuity correction if RVs are discrete (see Feb 15 section and Tsun Section 5.7.4)
- Normalize RV to have mean o and standard deviation 1.
- Write event in terms of Φ, the CDF of a $\mathcal{N}(0,1)$.
- Look up in table.

Agenda

- Central Limit Theorem (CLT)
- Polling

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.
Problem: We don't know p, want to estimate it

Polling Procedure

for $i=1, \ldots, n$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of p :

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Random Variables

Each X_{i} is Bernoulli (p)
$\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ has expectation. p and variance. $p(1-p) / n$

Therefore, by the Central Limit Theorem, as $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)
$$

Therefore, as n gets larger and larger, more and more probability mass concentrates around p

Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

Get good estimate if \bar{X} lands in this region

Question: for what n is $P(|\bar{X}-p|>0.05) \leq 0.02$

Recap

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

1. Define question. For what n is $P(|\bar{X}-p|>0.05) \leq 0.02$
2. Apply CLT: By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=$ $p(1-p) / n$
3. Convert to a standard normal. Specifically, define $Z=$ $\frac{\bar{x}-\mu}{\sigma}=\frac{\bar{x}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$
4. Solve for n

In more detail

1. The question: for what n is $P(|\bar{X}-p|>0.05) \leq 0.02$
2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. $\begin{aligned} P(|\bar{X}-p|>0.05) & =P(\bar{X}-p>0.05)+P(X-p<-0.05) \\ \text { Pr yellow }) & =P(\text { right yellow) }) \quad P(\text { eft yelbar })\end{aligned}$
4. $P(|\bar{X}-p|>0.05) \leq 0.02$ equivalent to $P(X-p>0.05) \leq 0.01$

$$
\text { gean rage } \leqslant 0.02 \text { green } \leqslant 0.01
$$

5. Equivalent to $P\left(\begin{array}{l}\bar{x}-p / \sqrt{p(1-p)} \\ \left(\begin{array}{l}\sqrt{n}\end{array}\right)\end{array} \frac{0.05}{\sqrt{p(1-p)}} \sqrt{\sqrt{n}}\right) \leq 0.01$
6. Equivalent to $P\left(Z>\frac{0.05}{\sqrt{p(1-p)} / \sqrt{n}}\right) \leq 0.01$

for whet a

$P(z>a) \leqslant 0.0$
$?$

Recall!!

For what a is

$$
P(Z>a) \leq 0.01 ?
$$

Equivalently

$P(Z \leq a) \geq 0.99$?
For any $a \geq 2.33$

$$
P(Z>a) \leq 0.01 .
$$

Then $P\left(Z>\frac{0.05}{\sqrt{p(1-p)} / \sqrt{n}}\right) \leq 0.01$.

So just need to solve this: $\sqrt{n} \geq \frac{2.33 \sqrt{p(1-p)}}{0.05}$
Since we don't know p, we will just take n so it works for all p. RHS is largest with $p=0.5$. So we take
$\sqrt{n} \geq \frac{2.33 \cdot 0.5}{0.05}$ or $\sqrt{n} \geq 23.3$
Then $n \geq 543 \geq(23.3)^{2}$ would be good enough.

- Since only have $Z \rightarrow \mathcal{N}(0,1)$ so there is some loss due to approximation error.
- So should increase n a bit more to be safe.

Zooming back out: we found an approximate"confidence interval"

We are trying to estimate some parameter (e.g. p). We output an estimator \bar{X} such that $P(|\bar{X}-p|>\epsilon) \leq \delta$ for some (ϵ, δ).

- Often found using CLT

$$
98 \%
$$

- We say that we are $(1-\delta){ }^{*} 100 \%$ confident that the result of our poll (\bar{X}) is an accurate estimate of p to within $\epsilon^{*} 100 \%$ percent.

$$
5 \%
$$

- In our example, $(\epsilon=0.05, \delta=0.02)$.

Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice :

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized mode!!

Agenda

- CLT and Polling
- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Analogues for continuous distributions
- LOTUS for joint distns

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop

Review Cartesian Product

Definition. Let A and B be sets. The Cartesian product of A and B is denoted

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Example.

$$
\{1,2,3\} \times\{4,5\}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.
The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^{2})

Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Example - Weird Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.
$\Omega_{X}=\{1,2,3,4\}$ and $\Omega_{Y}=\{1,2,3,4\}$

In this problem, the joint PMF is if
$p_{X, Y}(x, y)= \begin{cases}1 / 16 & \text { if } x, y \in \Omega_{X, Y} \\ 0 & \text { otherwise }\end{cases}$

$\mathbf{x} \mid \mathrm{Y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{2}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{3}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{4}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$

and the joint range is (since all combinations have non-zero probability)
$\Omega_{X, Y}=\Omega_{X} \times \Omega_{Y}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$

What is $p_{U, W}(1,3)=P(U=1, W=3)$?

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$

The joint PMF $p_{U, W}(u, w)=P(U=u, W=w)$ is
$p_{U, W}(u, w)= \begin{cases}2 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w>u \\ 1 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w=u \\ 0 & \text { otherwise }\end{cases}$

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $P(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $P(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

Just apply LTP over the possible values of W :

$$
\begin{aligned}
& p_{U}(1)=7 / 16 \\
& p_{U}(2)=5 / 16 \\
& p_{U}(3)=3 / 16 \\
& p_{U}(4)=1 / 16
\end{aligned}
$$

Uaw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

$$
P(U=1 \cap W=1)+P(U=1 \wedge \omega=2)
$$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
P(X=a)=p_{X}(a)=\sum_{b \in \Omega_{Y}} \underbrace{}_{P(X=a, Y} Y=b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega_{X}} p_{X, Y}(a, b)$

Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$ for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$
The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Independence and joint distributions

Definition. Discrete random variables X and Y are independent iff

- $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for all $x \in \Omega_{X}, y \in \Omega_{Y}$

Definition. Continuous random variables X and Y are independent iff

- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ for all $x, y \in \mathbb{R}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$
ω nox

Are U and W independent?

Example - Uniform distribution on a unit disk

This is a disk of radius 1 which has area π

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Are X and Y independent?

Example - Uniform distribution on a unit disk

Example - Uniform distribution on a unit disk

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
\begin{gathered}
\mathbb{E}[g(X, Y)]=\sum_{a \in \Omega_{X}} \sum_{b \in \Omega_{Y}} g(a, b) \cdot p_{X, Y}(a, b) \\
X_{1} Y \quad P_{X, Y}(a, b) \\
E\left[X^{2} Y^{3}\right]=\sum_{a \in \Omega} \sum_{X \in \Omega_{Y}} a^{2} b^{3} p_{X}, y\left(a b^{b}\right) \\
g(a, b)=a^{2} b^{3}
\end{gathered}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

