CSE 312 Foundations of Computing II

Lecture 2: Permutations, combinations, the Binomial Theorem and more.

1

Grading, syllabus and administrivia

- Please be sure that you read the syllabus carefully!!!!
- Questions?

Survival Tips

- Don't fall behind.
 - Do every single concept check.
 - Do the reading (better yet, ahead of time!)
 - Go through the section problems. Try to solve them. Make sure you understand the solutions.
- Take the homework seriously.
 - Get started early.
 - Come to office hours if you need help.
 - Form study groups!
 - Take academic integrity seriously.

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

https://pollev.com/ annakarlin185

Quick Summary

• Sum Rule

If you can choose from

- Either one of *n* options,
- OR one of m options with NO overlap with the previous n,

then the number of possible outcomes of the experiment is n + m

Product Rule

In a sequential process, if there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
 - n_k choices for the k^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_k$

• Complementary Counting

5

Quick Summary

- K-sequences: How many length k sequences over alphabet of size n? repetition allowed.
 - Product rule $\rightarrow n^{K}$
- K-permutations: How many length k sequences over alphabet of size n, without repetition?
 - Permutation $\rightarrow \frac{n!}{(n-k)!}$
- K-combinations: How many size k subsets of a set of n distinct elements (without repetition and without order)?

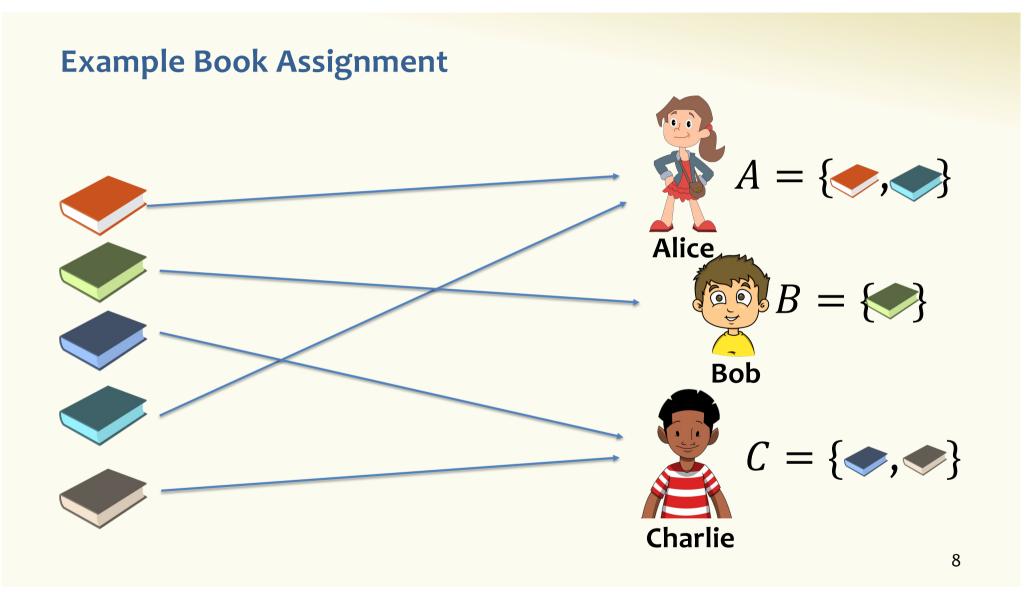
- Combination
$$\Rightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

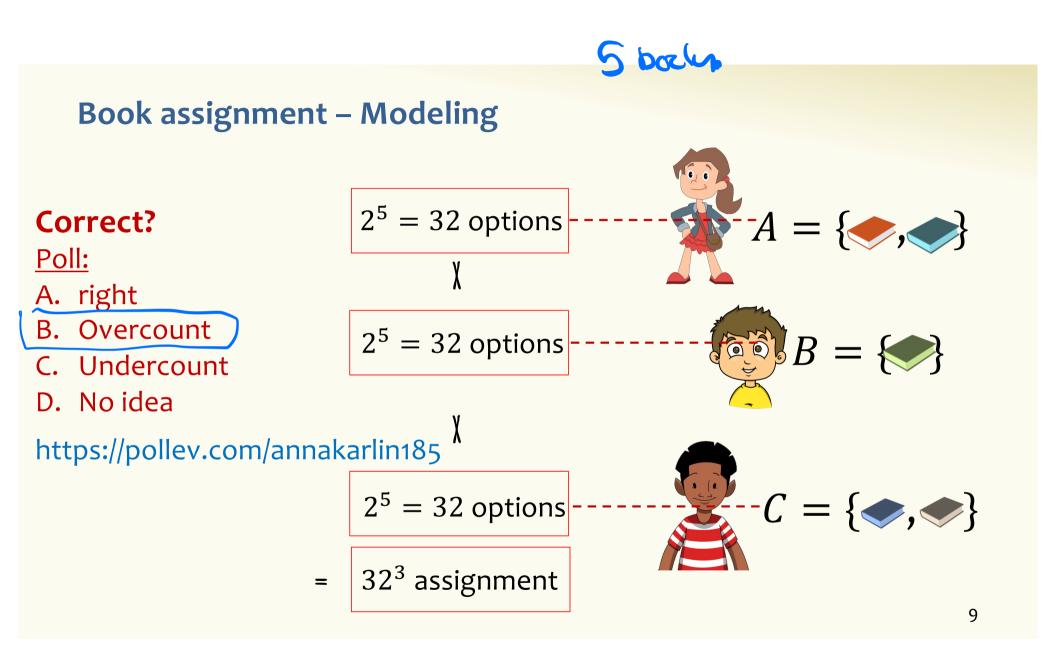
Product rule – Another example

5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets ≥ 0 books.

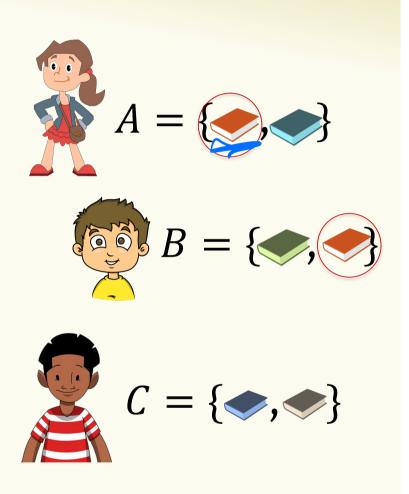


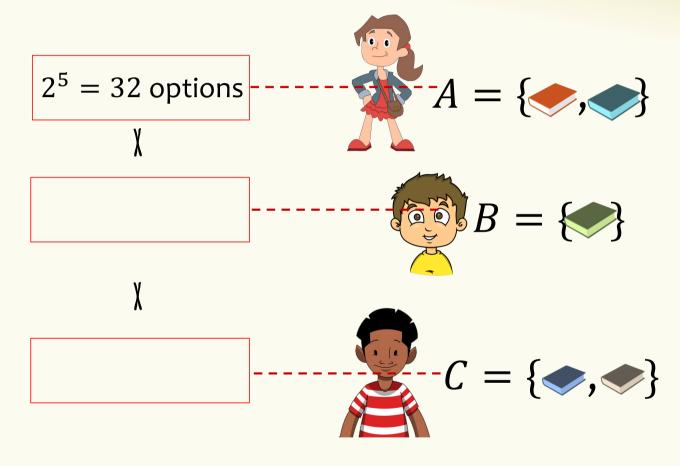


Problem – Overcounting

Problem: We are counting some invalid assignments!!!
→ overcounting!

What went wrong in the sequential process?After assigning set *A* to Alice, set*B* is no longer a valid option for Bob





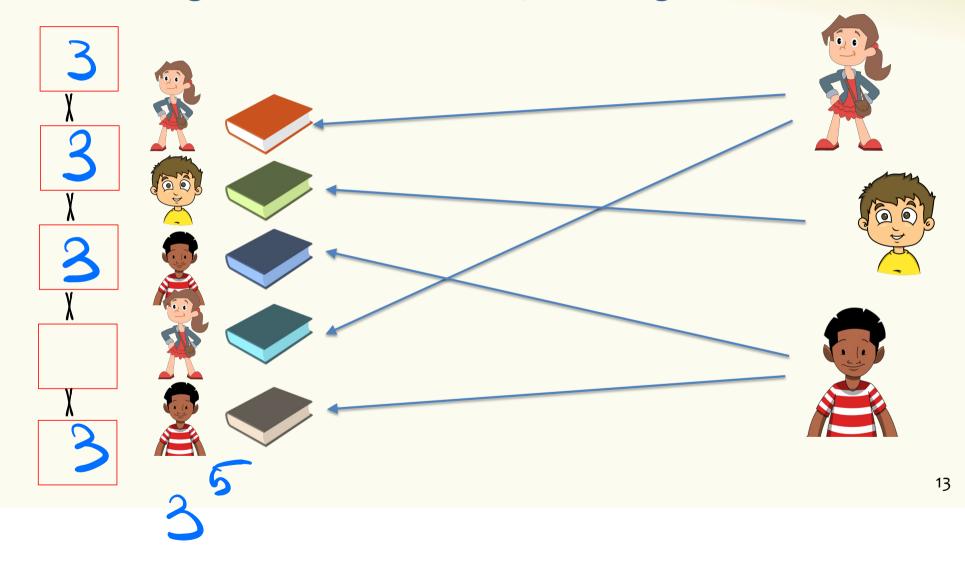
Product rule – A better way

5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets ≥ 0 books.

Book assignments – Choices tell you who gets each book

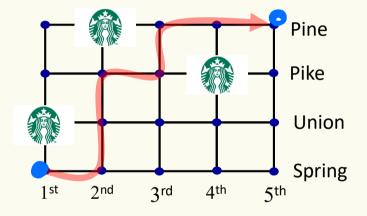


Lesson: Representation of what we are counting is very important!

Think about the various possible ways you could make a sequence of choices that leads to an outcome in the set of outcomes you are trying to count.

This Photo by Unknown Author is licensed under CC BY-NC

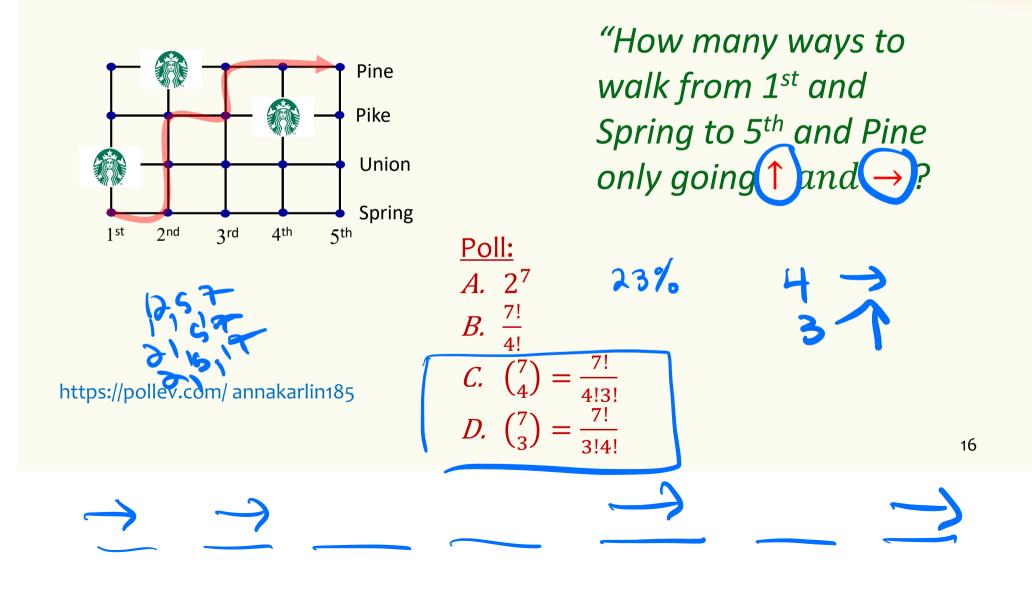
Example – Counting Paths



"How many ways to walk from 1^{st} and Spring to 5^{th} and Pine only going \uparrow and \rightarrow ?

$\xrightarrow{} 1 \xrightarrow{} 1 \xrightarrow{} 2 \xrightarrow{}$

Example – Counting Paths -2



Symmetry in Binomial Coefficients

Fact. $\binom{n}{k} = \binom{n}{n-k}$

Symmetry in Binomial Coefficients

Fact. $\binom{n}{k} = \binom{n}{n-k}$

Proof.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Why?? This is called an Algebraic proof, i.e., Prove by checking algebra

18

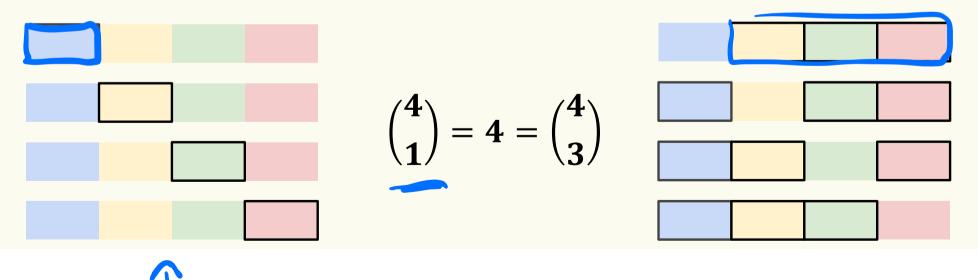
Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose *k* out of *n* objects (unordered)

6

- 1. Choose which *k* elements are included
- 2. Choose which n k elements are excluded



Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose *k* out of *n* objects (unordered)

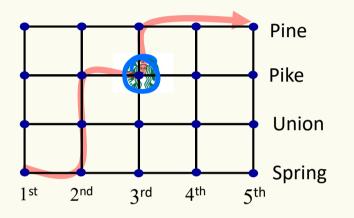
- 1. Choose which *k* elements are included
- 2. Choose which n k elements are excluded

This is called a combinatorial argument/proof

- Let *S* be a set of objects
- Show how to count |S| one way => |S| = N
- Show how to count |S| another way => |S| = m

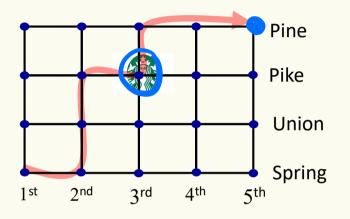
More examples of combinatorial proofs coming soon!

Example – Counting Paths - 3



"How many ways to walk from 1^{st} and Spring to 5^{th} and Pine only going \uparrow and \rightarrow but stopping at Starbucks on 3^{rd} and Pike?"

Example – Counting Paths - 3



"How many ways to walk from 1st and Spring to 5th and Pine only going ↑ and → but stopping at Starbucks on 3rd and Pike?"

https://pollev.com/ annakarlin185

 $\begin{array}{c}
\underline{\text{Poll:}}\\
A. \binom{7}{3}\\
B. \binom{7}{3}\binom{7}{1}\\
\hline
C. \binom{4}{2}\binom{3}{1}\\
D. \binom{4}{2}\binom{3}{2}
\end{array}$

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

(x+y)"

Binomial Theorem: Idea

 $(x + y)^2 = (x + y)(x + y)$ = xx + xy + yx + yy $= x^2 + 2xy + y^2$ $(x + y)^4 = (x + y)(x + y)(x + y)(x + y)$ $= xxxx + yyyy + xyxy + yxyy + \dots$ (4)

.

Binomial Theorem: Idea

Poll: What is the coefficient for xy^3 ? A. 4 B. $\begin{pmatrix} 4\\ 1 \end{pmatrix}$ C. $\begin{pmatrix} 4\\ 3 \end{pmatrix}$ D. 3

https://pollev.com/ annakarlin185

$$(x + y)^{4} = (x + y)(x + y)(x + y)(x + y)$$

= xxxx + yyyy + xyxy + yxyy + ...

Binomial Theorem: Idea

$$(x + y)^n = (x + y)(x + y)(x + y) \cdots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$?

$$(x+y)^{n} = \sum_{k=0}^{n} (k)^{k} y^{n-k}$$

Binomial Theorem: Idea

$$(x + y)^n = (x + y)(x + y)(x + y) \cdots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$? The number of ways to choose k of the n variables we multiply to be an x (the rest will be y).

$$\binom{n}{k} = \binom{n}{n-k}$$

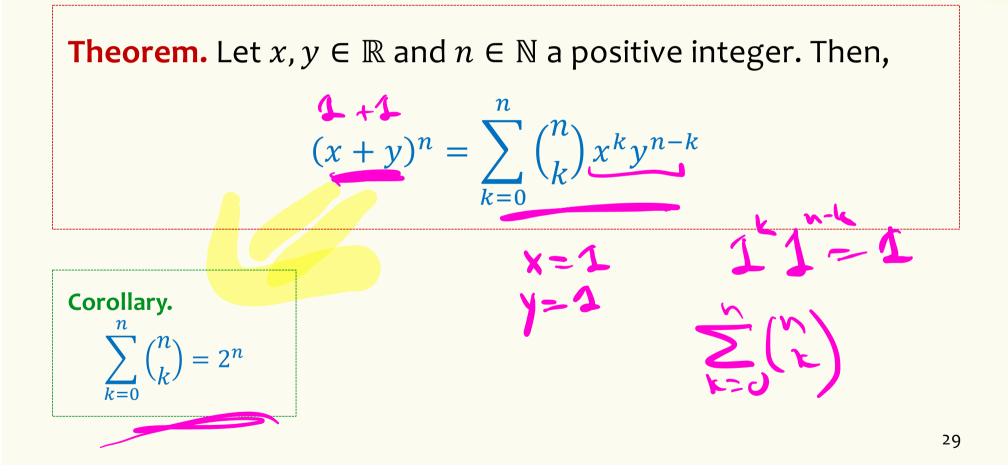
27

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

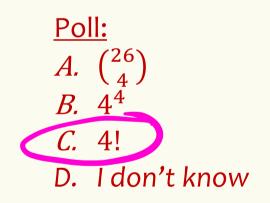
Binomial Theorem



Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

How many ways to re-arrange the letters in the word "MATH"?



https://pollev.com/ annakarlin185

How many ways to re-arrange the letters in the word "MUUMUU"?

6!
$$\binom{6}{2} \cdot \binom{4}{4}$$

How many ways to re-arrange the letters in the word "MUUMUU"?

Choose where the 2 M's go, and then the U's are set **OR** Choose where the 4 U's go, and then the M's are set

Either way, we get $\binom{6}{2} \cdot \binom{4}{4} = \binom{6}{4} \cdot \binom{2}{2} = \frac{6!}{2!4!}$

Another way to think about it

6!

2!4!

Yields -

How many ways to re-arrange the letters in the word "MUUMUU"?

Arrange the 6 letters as if they were distinct. $M_1U_1U_2M_2U_3U_4$

Then divide by 4! to account for duplicate M's and divide by 2! to account for duplicate U's.

34

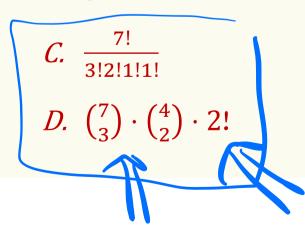
Another example – Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

Poll:

A. 7!

B. $\frac{7!}{3!}$



https://pollev.com/ annakarlin185

Multinomial coefficients

If we have k types of objects, with n_1 of the first type, n_2 of the second type, ..., n_k of the kth type, where $n = n_1 + n_2 + \dots + n_k$ then the number of arrangements of the n objects is $\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$

Note that objects of the same type are indistinguishable.

How many ways to re-arrange the letters in the word "GODOGGY"?

n= 7 (length of sequence) K = 4 types = {G, O, D, Y} $n_1 = 3, n_2 = 2, n_3 = 1, n_4 = 1$

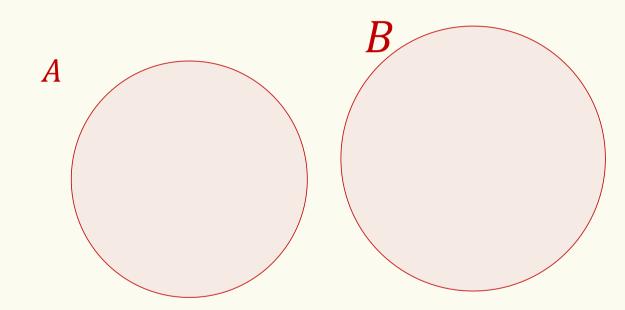
$$\binom{6}{4,2,1,1} = \frac{6!}{2!4!1!1!}$$

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Recap Disjoint Sets

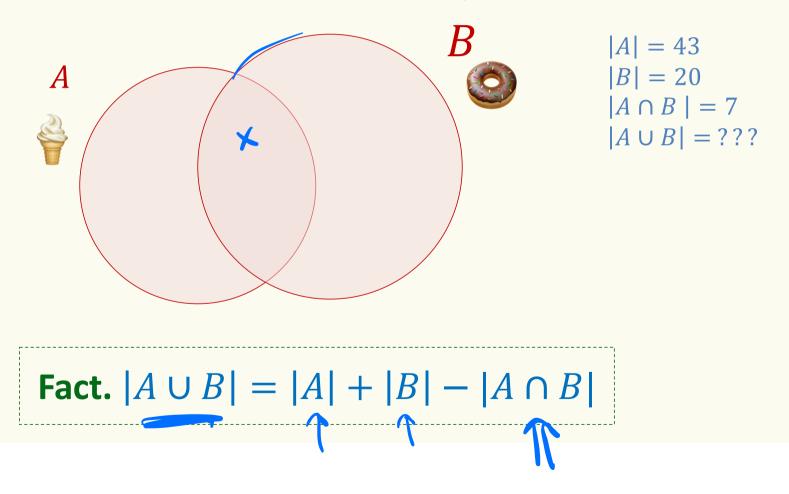
Sets that do not contain common elements $(A \cap B = \emptyset)$



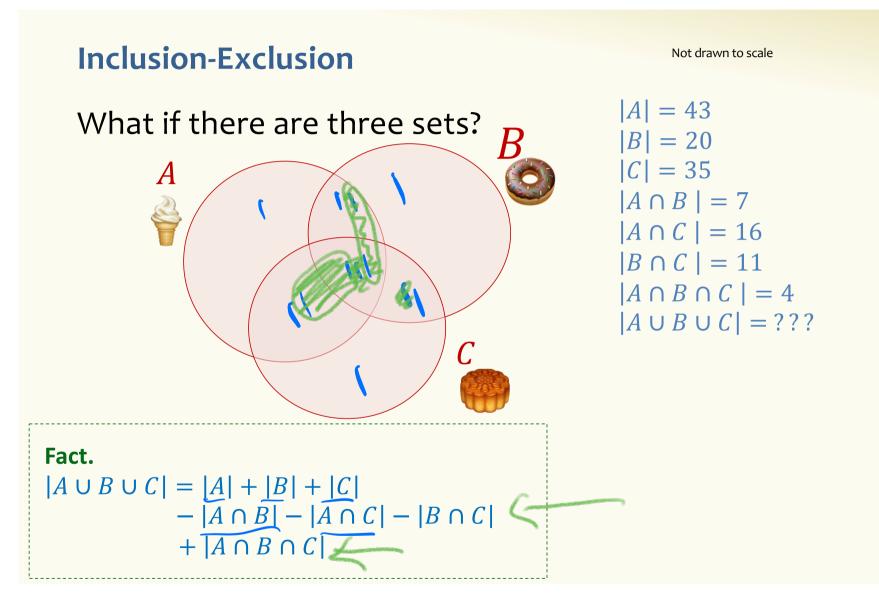
Sum Rule: $|A \cup B| = |A| + |B|$

Inclusion-Exclusion

But what if the sets are not disjoint?



41



Inclusion-Exclusion

Let
$$A, B$$
 be sets. Then
 $|A \cup B| = |A| + |B| - |A \cap B|$

In general, if A_1, A_2, \dots, A_n are sets, then

$$\begin{split} |A_1 \cup A_2 \cup \dots \cup A_n| &= singles - doubles + triples - quads + \dots \\ &= (|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \dots \end{split}$$

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Combinatorial proof: Show that M = N

- Let *S* be a set of objects
- Show how to count |S| one way => |S| = M
- Show how to count |S| another way => |S| = N
- Conclude that *M* = *N*

Binomial Coefficient – Many interesting and useful properties

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \qquad \binom{n}{n} = 1 \qquad \binom{n}{1} = n \qquad \binom{n}{0} = 1$$
Fact. $\binom{n}{k} = \binom{n}{n-k}$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ Pascal's Identity
Fact. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$ Follows from Binomial theorem
$$46$$

Combinatorial Proof?

Fact.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

i_____i
