CSE 312
 Foundations of Computing II

Lecture 2: Permutations, combinations, the Binomial Theorem and more.

W
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Grading, syllabus and administrivia

- Please be sure that you read the syllabus carefully!!!!
- Questions?

Survival Tips

- Don't fall behind.
- Do every single concept check.
- Do the reading (better yet, ahead of time!)
- Go through the section problems. Try to solve them. Make sure you understand the solutions.
- Take the homework seriously.
- Get started early.
- Come to office hours if you need help.
- Form study groups!
- Take academic integrity seriously.

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs
https://pollev.com/ annakarlin185

Quick Summary

- Sum Rule

If you can choose from

- Either one of n options,
- OR one of m options with NO overlap with the previous n,
then the number of possible outcomes of the experiment is $n+m$
- Product Rule

In a sequential process, if there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), ..., and
- n_{k} choices for the $k^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{k}$
- Complementary Counting

Quick Summary

- K-sequences: How many length k sequences over alphabet of size n ? repetition allowed.
- Product rule $\rightarrow \mathrm{n}^{K}$
- K-permutations: How many length k sequences over alphabet of size n , without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- K-combinations: How many size k subsets of a set of n distinct elements (without repetition and without order)?
- Combination $\rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Product rule - Another example 5 books

Example Book Assignment

Book assignment - Modeling

Correct?

Poll:
A. right
B. Overcount
C. Undercount
D. No idea

$$
\left.2^{5}=32 \text { options }-\cdots\right\}
$$

https://pollev.com/annakarlin185 X
$=32^{3}$ assignment

Problem - Overcounting

Problem: We are counting some invalid assignments!!!
 \rightarrow overcounting!

What went wrong in the sequential process? After assigning set A to Alice, set B is no longer a valid option for Bob

Book assignment - Second try

Product rule - A better way

 5 books

Every book to one person, everyone gets ≥ 0 books.

Book assignments - Choices tell you who gets each book

Lesson: Representation of what we are counting is very important!

Think about the various possible ways you could make a sequence of choices that leads to an outcome in the set of outcomes you are trying to count.

Example - Counting Paths

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?

Example - Counting Paths -2

https://pollev.com/ annakarlin185
"How many ways to Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?

Poll:
A. 2^{7}
B. $\frac{7!}{4!}$
C. $\binom{7}{4}=\frac{7!}{4!3!}$
D. $\binom{7}{3}=\frac{7!}{3!4!}$

Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n}{n-k}$

Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n}{n-k}$
Proof. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}$

Why??

This is called an Algebraic proof, i.e., Prove by checking algebra

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$
Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

$$
\binom{4}{1}=4=\binom{4}{3}
$$

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

This is called a combinatorial argument/proof

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $=>|S|=N$
- \quad Show how to count $|S|$ another way $=>|S|=m$

More examples of combinatorial proofs coming soon!

Example - Counting Paths - 3

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{\text {rd }}$ and Pike?"

Example - Counting Paths - 3

https://pollev.com/ annakarlin185
"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{\text {rd }}$ and Pike?"
Poll:
A. $\binom{7}{3}$
B. $\binom{7}{3}\binom{7}{1}$
C. $\binom{4}{2}\binom{3}{1}$
D. $\binom{4}{2}\binom{3}{2}$

Agenda

- Recap \& Examples
- Binomial Theorem ■
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Binomial Theorem: Idea

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x x+x y+y x+y y \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
(x+y)^{4} & =(x+y)(x+y)(x+y)(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

Binomial Theorem: Idea

Poll: What is the coefficient for $x y^{3}$?
A. 4
B. $\binom{4}{1}$
C. $\binom{4}{3}$
D. 3
https://pollev.com/ annakarlin185

$$
\begin{aligned}
(x+y)^{4} & =(x+y)(x+y)(x+y)(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y)(x+y)(x+y) \cdots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^{k} y^{n-k}$?

Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y)(x+y)(x+y) \cdots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^{k} y^{n-k}$? The number of ways to choose k of the n variables we multiply to be an x (the rest will be y).

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Corollary.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Example - Word Permutations

How many ways to re-arrange the letters in the word "MATH"?

Poll:
A. $\binom{26}{4}$
B. 4^{4}

MATH
C. 4 !
D. I don't know
https://pollev.com/ annakarlin185

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?

Choose where the 2 M's go, and then the U's are set OR Choose where the 4 U's go, and then the M's are set

Either way, we get $\binom{6}{2} \cdot\binom{4}{4}=\binom{6}{4} \cdot\binom{2}{2}=\frac{6!}{2!4!}$

Another way to think about it

How many ways to re-arrange the letters in the word "MUUMUU"?

Arrange the 6 letters as if they were distinct.

$$
M_{1} U_{1} U_{2} M_{2} U_{3} U_{4}
$$

Then divide by 4 ! to account for duplicate M 's and divide by 2 ! to account for duplicate U's.
Yields $\frac{6!}{2!4!}$

Another example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

Poll:
A. 7 !
B. $\frac{7!}{3!}$

C. $\frac{7!}{3!2!1!1!}$
D. $\binom{7}{3} \cdot\binom{4}{2} \cdot 2!\quad$ https://pollev.com/ annakarlin185

Multinomial coefficients

If we have k types of objects, with n_{1} of the first type, n_{2} of the second type, \ldots, n_{k} of the $k^{\text {th }}$ type, where $n=n_{1}+n_{2}+\cdots+n_{k}$ then the number of arrangements of the n objects is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Note that objects of the same type are indistinguishable.

Example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

$$
\begin{aligned}
& n=7 \text { (length of sequence) } \quad K=4 \text { types }=\{G, O, D, Y\} \\
& n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=1 \\
& \binom{6}{4,2,1,1}=\frac{6!}{2!4!1!1!}
\end{aligned}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B=\varnothing$)

Sum Rule: $|A \cup B|=|A|+|B|$

Inclusion-Exclusion

But what if the sets are not disjoint?

Fact. $|A \cup B|=|A|+|B|-|A \cap B|$

Inclusion-Exclusion

What if there are three sets?

Fact.

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion

Let A, B be sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\ldots+\left|A_{n-1} \cap A_{n}\right|\right)+\ldots
\end{aligned}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Combinatorial proof: Show that $M=N$

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $=>|S|=M$
- \quad Show how to count $|S|$ another way $=>|S|=N$
- Conclude that $M=N$

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k} \quad$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ Pascal's Identity
Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial theorem

Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later } \ldots \\
& =\frac{n}{k!(n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad
\end{aligned}
$$

Let's see a combinatorial argument

Example - Binomial Identity

$$
|S|=|A|+|B|
$$

$$
S=A \cup B, \text { disjoint }
$$

S : the set of size k subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$
A : the set of size k subsets of $[n]$ including n
B : the set of size k subsets of $[n]$ NOT including n

Example - Binomial Identity

Fact. $\begin{aligned}\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\ |S| & =|A|+|B|\end{aligned}$

$S:$ the set of size k subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$ e.g.: $n=4, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : the set of size k subsets of $[n]$ including n

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\} . \quad n=4
$$

B : the set of size k subsets of $[n]$ NOT including n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

Example - Binomial Identity

$S=A \cup B$
n is in set, need to choose $k-1$
S : the set of size k subsets of $[n]=\{1,2, \cdots, n\}$
A : the set of size k subsets of $[n]$ including n elements from $[n-1]$

$$
|A|=\binom{n-1}{k-1}
$$

n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

Pascal's triangle
 $$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

$\binom{0}{0}$ $\binom{1}{0}\binom{1}{1}$

$$
\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2}
$$

$$
\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}
$$

$$
\binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4}
$$

$$
\binom{5}{0} \quad\binom{5}{1} \quad\binom{5}{2} \quad\binom{5}{3} \quad\binom{5}{4} \quad\left(\begin{array}{l}
5 \\
5
\end{array}\right.
$$

combinatorial argument/proof

- Elegant
- Simple
- Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Algebraic argument

- Brute force
- Less Intuitive

Combinatorial Proof?

Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$

