CSE 312
Foundations of Computing II
19: More Joint Distributions; Law of Total Expectation

Agenda

- Bit more on joint distributions
- Law of Total Expectation and LTP (continuous)

Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDT	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Support/range $\Omega_{x}=\left\{x \mid p_{x}(x)>0\right\}$

$$
\begin{aligned}
& \Omega_{x}=\left\{x \mid f_{X}(x)>0\right\} \\
& P\left(X \in\left[x_{1} x+d x\right]\right) \approx f_{X}(x) d x
\end{aligned}
$$

Jointly distributed random variables

Grade on exam	
Performance of Microsoft stock	Amount of sleep the night before
Grade of person A on exam in 312	Grade of person B on exam in 332
Number of job interviews to get a job	State of the economy
X_{1} blood pressure	
X_{2} temperature	
X_{3} blood glucose	
X_{4} kidney function	

X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $(\mathrm{Bad}=1$, Below $\mathrm{Avg}=2$, Above Avg $=3$, Excellent $=4$

	1	2 xiv	3	4
Bad	Below Avg	Above Avg	Excelle nt	
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- Valid joint probability mass function?

Each entry gives prob mass
f_{n} at that (x, y) pair $P(X=x, y=y)=P_{x} y(x, y)$
X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $(\operatorname{Bad}=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

X/V	Bad	Below Avg	Above Avg	
	Excelle nt			
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- Valid joint probability mass function?

Need to check:

1) $p_{x, y}(x, y) \geqslant 0 \quad \forall x, y$
2) $\sum_{x, y \in \Omega_{x, y}} P_{x, y}(x, y)=1$

$$
\Omega_{x, y}=\{(x, y) \mid \underbrace{P(X=x, y=y)}_{P(x, y, y)}>0\}
$$

X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. (Bad =1, Below Avg = 2, Above Avg =3, Excellent $=4$

	1 x / r	Bad Below Avg	Above Avg	Excelle nt
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- Probability a student gets a job in one interview and economy is excellent?

$$
p(x=1, y=4)=0.12
$$

X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $($ Bad $=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

	1 xiv	Bad	Below Avg	Above Avg
	Excelle nt			
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- Probability a student gets a job in at most 3 interviews and economy below avg?

$$
\begin{aligned}
p(X & \leqslant 3 \quad n Y=2) \\
& =0.22
\end{aligned}
$$

X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $(\operatorname{Bad}=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

	2	2 Below Avg	3 Above Avg	Excelle nt
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- A student takes exactly 3 interviews to get a job?

$$
\begin{aligned}
& P(X=3) \\
&= P(x=3 \wedge r=1 \\
&+P(x=3 \cap y=2) \\
&+ P(x=3, n y=3) \\
&+P(x=3) y=4)
\end{aligned}
$$

marginal dist of X
X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $(\operatorname{Bad}=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

	1	2	3	4
x/v	Bad	Below Avg	Above Avg	Excelle nt
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

$$
\begin{aligned}
& P(X=x \mid y=2) \\
& =P_{x \mid y=2}(x)
\end{aligned}
$$

condital prob mass in
X is the number of of job interviews you need to do to get a job.
Y is the state of the economy. $(\operatorname{Bad}=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

	1	2	3	4
x / y	Bad	Below Avg	Above Avg	Excelle nt
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- A student gets a job in one interview given that the economy is below average?

$$
P(X=x \mid Y=2) \text { culled }
$$

$$
\begin{aligned}
& P(x=1 \mid y=2) \\
& =\frac{P(x=1 \cap y=2)}{P(y=2)}=\frac{0.05}{\text { pink }} \\
& =\frac{0.05}{0.34}
\end{aligned}
$$

$$
\Omega_{x, y}=\Omega_{x} * \Omega_{y}
$$

X is the number of of job interviews you need to do to get a job. Y is the state of the economy. $($ Bad $=1$, Below Avg $=2$, Above Avg $=3$, Excellent $=4$

	1	2	3	4
x/r	Bad	Below Avg	Above Avg	Excelle nt
$\mathbf{1}$	0.01	0.05	0.08	0.12
$\mathbf{2}$	0.03	0.05	0.06	0.12
$\mathbf{3}$	0.03	0.12	0.04	0.05
$\mathbf{4}$	0.08	0.12	0.03	0.01

- Are these random variables independent?

Need to check that

$$
\begin{gathered}
P_{X, Y}(x, y)=P_{X}(x) \cdot P_{y}(y) \\
\forall x, y
\end{gathered}
$$

$$
\begin{aligned}
& P_{x}(1)=0.01+0.05+0.08+0.12=0.26 \\
& \rho_{y}(4)=0.12+0.12+0.05+0.01=0.3 \\
& 0.26 \cdot 0.3=0.078 \quad \neq 0.12=P_{x, y}(1,4)
\end{aligned}
$$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$

Are U and W independent?

U\|W	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

A quick check for independence

The check: $\Omega_{X} \times \Omega_{Y}$ must equal $\Omega_{X, Y}$ for independence.
Suppose that there is some $(a, b) \in \Omega_{X} \times \Omega_{Y}$, but not in $\Omega_{X, Y}$.
Then: $p_{X, Y}(a, b)=0$
But: $\quad p_{X}(a)>0$ and $p_{Y}(b)>0$

But beware, the converse is not true: $\Omega_{X} \times \Omega_{Y}=\Omega_{X, Y}$ does not imply independence!

$$
\leftarrow \mid \quad P(X \leq x, Y \leq y)
$$

Joint distributions

$$
\Omega_{x, y}=\left\{(x, y) \mid p_{x, y}(x, y)>0\right\} \quad \Omega_{x, y}=\left\{(x, y) \mid f_{x, y}(x, y)>0\right\}
$$

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

$$
\begin{aligned}
P(X \in[x, x+d x], y \in[y+d y]) \approx f_{x, y}(x, y) d x d y \\
P((x, y) \in A)=\sum_{\substack{f \\
\text { set } \\
\text { onions }}} P_{x, y) \in A}(x, y) \quad P((x, y) \subseteq R)=\int_{R} f_{x, y}(x, y) d x d y
\end{aligned}
$$

Example - Uniform distribution on a unit disk

Joint distributions

$$
\Omega_{x, y}=\left\{(x, y) \mid P_{x, y}(x, y)>0\right\} \quad \Omega_{x, y}=\left\{(x, y) \mid f_{x, y}(x, y)>0\right\}
$$

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

$$
\left.P(X \in[x, x+d y], Y \in[y+d y]) \approx f_{x_{1}}, y, y\right) d x d y
$$

$$
P((x, y) \in A)=\sum_{\substack{(x, y) \in A \\ \text { set of } \\ \text { contours }}} P_{x_{1}, y}(x, y)
$$

$$
P((x, y) \subset R)=\int_{R} f_{x, y}(x, y) d d y
$$

Example - Uniform distribution on a unit disk

Suppose that a pair of random variables (X, Y) is chosen uniformly from the set of real points (x, y) such that $x^{2}+y^{2} \leq 1$

What is the joint density?

$$
f_{X, Y}(x, y)= \begin{cases}C & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\left.c \cdot \begin{array}{c}
\text { Area } \\
\text { circle } \\
\text { circe } \\
x^{2}+y^{2} \leq 1
\end{array}\right) \quad \Rightarrow \int_{c=1} c d x d y=\frac{1}{\pi}
$$

Example - Uniform distribution on a unit disk

Suppose that a pair of random variabes (X, Y) is chosen uniformly from the set of real points (x, y) such that $x^{2}+y^{2} \leq 1$

This is a disk of radius 1 which has area π

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

What is $f_{X}(x)$?

$$
x^{2}+y^{2}=1
$$

$\int_{-\infty}^{\infty} f_{x}, y(x, y) d$

$$
\int_{-y}^{y} \frac{1}{\pi} d y=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} d y
$$

Joint distributions

$$
\Omega_{x, y}=\left\{(x, y) \mid P_{x, y}(x, y)>0\right\} \quad \Omega_{x, y}=\left\{(x, y) \mid f_{x, y}(x, y)>0\right\}
$$

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

$$
\left.P(X \in[x, x+d y], Y \in[y+d y]) \approx f_{x_{1}}, y, y\right) d x d y
$$

$$
P((x, y) \in A)=\sum_{\substack{(x, y) \in A \\ \text { set of } \\ \text { contours }}} P_{x_{1}, y}(x, y)
$$

$$
P((x, y) \subset R)=\int_{R} f_{x, y}(x, y) d d y
$$

Example - Uniform distribution on a unit disk

Example - Uniform distribution on a unit disk

Example - Uniform distribution on a unit disk

[^0]This is a disk of radius 1 which has area π

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Agenda

- Bit more on joint distributions
- Law of Total Expectation and LTP (continuous)

Conditional Expectation and Law of Total Expectation

Suppose someone gave us $Y \sim \operatorname{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

Conditional Expectation

Definition. If X is a discrete random variable then the conditional expectation of X given event A is

$$
\underline{\mathbb{E}[X \mid A]}=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Note:

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$
\begin{align*}
\mathbb{E}[X] & =\sum_{x \in \Omega_{X}} x \cdot P(X=x) \\
& =\sum_{x \in \Omega_{X}} x \cdot \sum_{i=1}^{n} P\left(X=x \mid A_{i}\right) \cdot P\left(A_{i}\right) \tag{byLTP}\\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \sum_{x \in \Omega_{X}} x \cdot P\left(X=x \mid A_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]
\end{align*}
$$

(change order of sums)
(def of cond. expect.)

Example - Flipping a Random Number of Coins

Suppose someone gave us $Y \sim \operatorname{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{i=0}^{\infty} \mathbb{E}[X \mid Y=i] \cdot P(Y=i) & =\sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y=i) \\
& =\frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y=i) \\
& =\frac{1}{2} \cdot \mathbb{E}[Y]=\frac{1}{2} \cdot 5=2.5
\end{aligned}
$$

Example -- Elevator rides

The number X of people who enter an elevator on the ground floor is a Poisson random variable with mean 10 . If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.

Example -- Elevator rides
The number X of people who enter an elevator on the ground floor is a Poisson random variable with mean 10 . If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.

$$
\begin{aligned}
& S \text { \# stops, elevator makes } \\
& E(S)=\sum_{i=0}^{\infty} E(S \mid X=i) \underbrace{\frac{e^{-10} 10^{i}}{i!}}_{2}
\end{aligned}
$$

$$
\begin{gathered}
S=Y_{1}+Y_{2}+\ldots+Y_{N} \\
y_{j}= \begin{cases}1 & \text { soreare gets off at floor } j \\
0 & 0, \omega .\end{cases} \\
E(S \mid X=i)=E\left(Y_{1}+\ldots+Y_{N} \mid X=i\right)=E\left(Y_{1} \mid X=i\right)+E\left(Y_{2} \mid X=i\right) \\
\\
+\ldots+E\left(Y_{N} \mid X=i\right)
\end{gathered}
$$

$E\left(Y_{j} \mid X=i\right)=\operatorname{Pr}($ at least one $8 i$ people gets off at floor j)

$$
\begin{aligned}
& =1-\operatorname{Pr}(\text { nobody gets off at floor } j) \\
& =1-\left(1-\frac{1}{N}\right)^{i}
\end{aligned}
$$

$$
E(S \mid X=i)=N\left(1-\left(1-\frac{1}{N}\right)^{i}\right)
$$

Law of total probability

Definition. Let A be an event and Y a discrete random variable. Then

$$
P[A]=\sum_{y \in \Omega_{Y}} P(A \mid Y=y) p_{Y}(y)
$$

Definition. Let A be an event and Y a continuous random variable. Then

$$
P[A]=\int_{-\infty}^{\infty} P(A \mid Y=y) f_{Y}(y) \mathrm{d} y
$$

Example use of law of total probability

Suppose that the time until server 1 crashes is $X \sim \operatorname{Exp}(\lambda)$ and the time until server 2 crashes is independent, with $Y \sim \operatorname{Exp}(\mu)$. What is the probability that server 1 crashes before server 2?

Example use of law of total probability

$X \sim \operatorname{Exp}(\lambda), Y \sim \operatorname{Exp}(\mu)$.
What is the probability that $Y>X$?

$$
\begin{aligned}
P(Y>X) & =\int_{0}^{\infty} \operatorname{Pr}(Y>X \mid X=x) f_{X}(x) d x \\
& =\int_{0}^{\infty} \operatorname{Pr}(Y>x \mid X=x) \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \operatorname{Pr}(Y>x) \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} d x \\
& =\frac{\lambda}{\lambda+\mu} \int_{0}^{\infty}(\lambda+\mu) \cdot e^{-\mu x} e^{-\lambda x} d x \\
& =\frac{\lambda}{\lambda+\mu}
\end{aligned}
$$

Alternative approach

$$
X \sim \operatorname{Exp}(\lambda), Y \sim \operatorname{Exp}(\mu)
$$

What is the probability that $Y>X$?

$$
\begin{aligned}
P(Y>X) & =\int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X, Y}(x, y) \mathrm{dy} \mathrm{~d} x \\
& =\int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X}(x) \cdot f_{Y}(y) \mathrm{dy} \mathrm{~d} x
\end{aligned}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

[^0]: Are X and Y independent?

