CSE 312 Foundations of Computing II

19: More Joint Distributions; Law of Total Expectation

Agenda

- Bit more on joint distributions
- Law of Total Expectation and LTP (continuous)

Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Jointly distributed random variables

X	Y
Grade on exam	Amount of sleep the night before
Performance of Microsoft stock	Performance of Amazon stock
Grade of person A on exam in 312	Grade of person B on exam in 332
Number of job interviews to get a job	State of the economy

 X_1 blood pressure X_2 temperature X_3 blood glucose X_4 kidney function

X is the number of of job interviews you need to do to get a job.

Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

Х/Ү	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

• Valid joint probability mass function?

- X is the number of of job interviews you need to do to get a job.
- Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

X/Y	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

• Probability a student gets a job in one interview and economy is excellent?

- X is the number of of job interviews you need to do to get a job.
- Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

X/Y	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

 Probability a student gets a job in at most 3 interviews and economy below avg?

- X is the number of of job interviews you need to do to get a job.
- Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

X/Y	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

• A student takes exactly 3 interviews to get a job?

- X is the number of of job interviews you need to do to get a job.
- Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

X/Y	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

• A student gets a job in one interview given that the economy is below average?

- X is the number of of job interviews you need to do to get a job.
- Y is the state of the economy. (Bad = 1, Below Avg = 2, Above Avg = 3, Excellent = 4

X/Y	Bad	Below Avg	Above Avg	Excelle nt
1	0.01	0.05	0.08	0.12
2	0.03	0.05	0.06	0.12
3	0.03	0.12	0.04	0.05
4	0.08	0.12	0.03	0.01

• Are these random variables independent?

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let *X* be the value of the first die, and *Y* be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ $\Omega_U = \{1, 2, 3, 4\}$ and $\Omega_W = \{1, 2, 3, 4\}$

$$\Omega_{U,W} = \{(u,w) \in \Omega_U \times \Omega_W : u \le w\} \neq \Omega_U \times \Omega_W$$

Are U and W independent?

U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

e

A quick check for independence

The check: $\Omega_X \times \Omega_Y$ must equal $\Omega_{X,Y}$ for independence.

Suppose that there is some $(a, b) \in \Omega_X \times \Omega_Y$, but not in $\Omega_{X,Y}$.

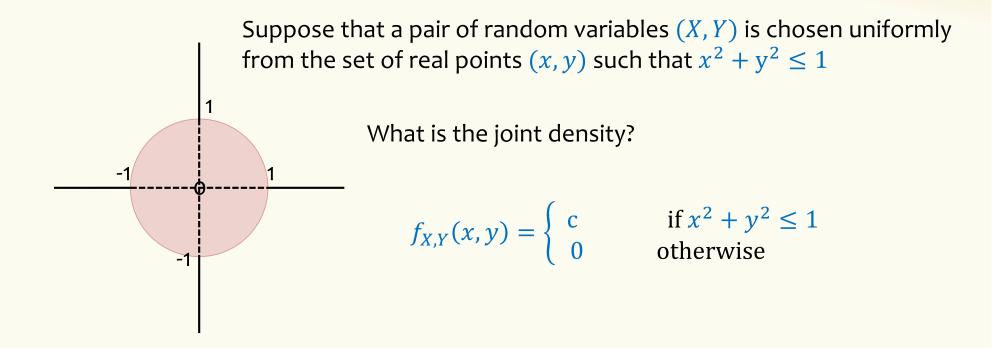
Then: $p_{X,Y}(a, b) = 0$

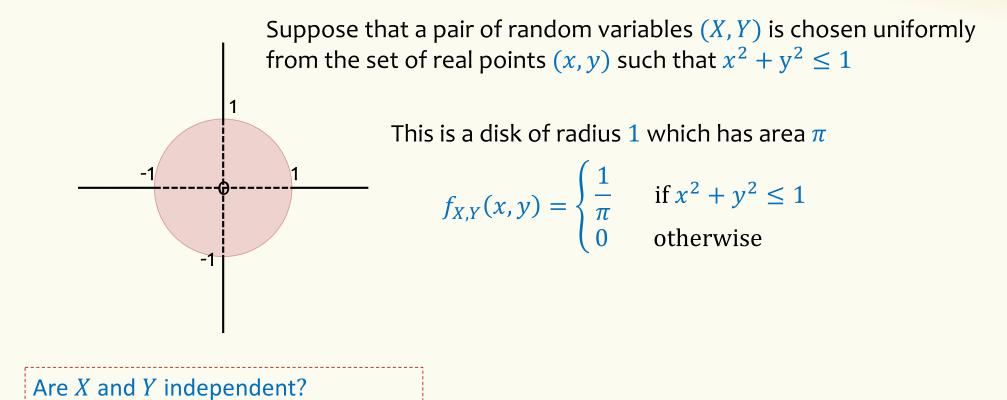
But: $p_X(a) > 0$ and $p_Y(b) > 0$

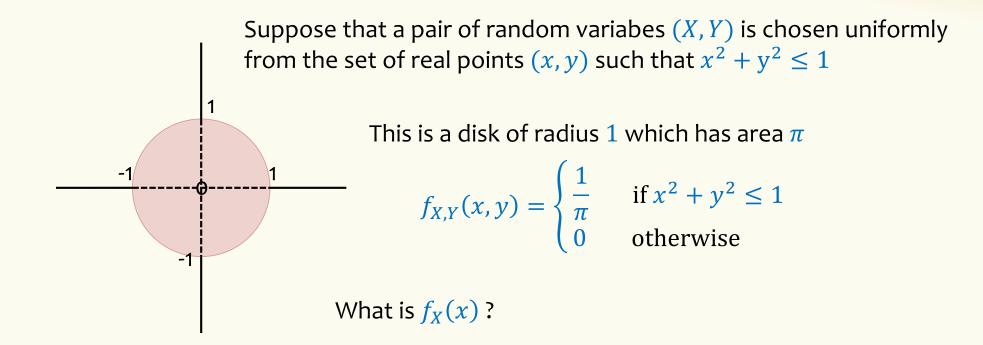
But beware, the converse is not true: $\Omega_X \times \Omega_Y = \Omega_{X,Y}$ does not imply independence!

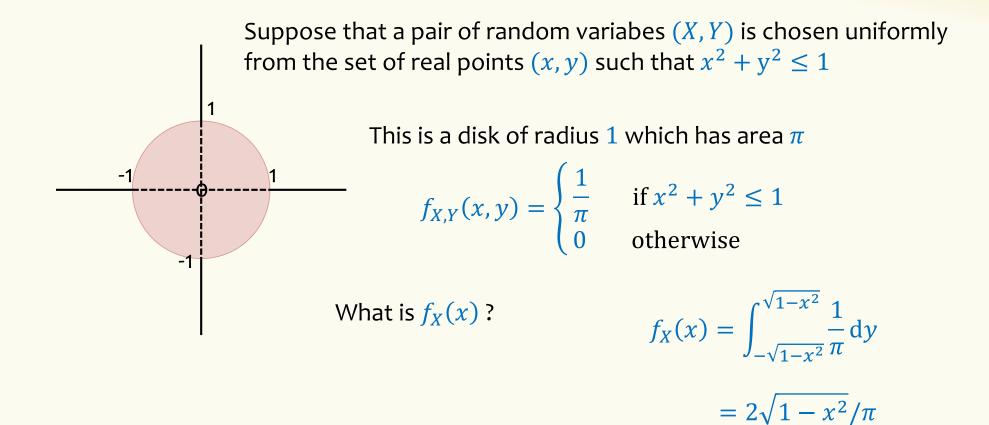
Joint distributions

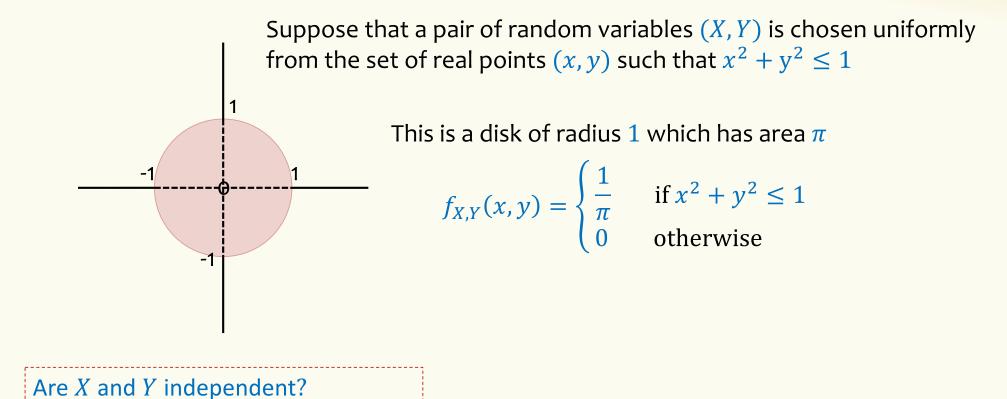
	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$











Agenda

- Bit more on joint distributions
- Law of Total Expectation and LTP (continuous)

Conditional Expectation and Law of Total Expectation

Suppose someone gave us $Y \sim Poi(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

Conditional Expectation

Definition. If *X* is a discrete random variable then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Note:

• Linearity of expectation still applies here $\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)$$

$$= \sum_{x \in \Omega_X} x \cdot \sum_{i=1}^n P(X = x | A_i) \cdot P(A_i) \qquad (by LTP)$$

$$= \sum_{i=1}^n P(A_i) \sum_{x \in \Omega_X} x \cdot P(X = x | A_i) \qquad (change order of sums)$$

$$= \sum_{i=1}^n P(A_i) \cdot \mathbb{E}[X|A_i] \qquad (def of cond. expect.)$$

Example – Flipping a Random Number of Coins

Suppose someone gave us $Y \sim Poi(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation $\mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{E}[X \mid Y = i] \cdot P(Y = i) =$

Example – Flipping a Random Number of Coins

Suppose someone gave us $Y \sim Poi(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$\mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{E}[X \mid Y = i] \cdot P(Y = i) = \sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y = i)$$
$$= \frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y = i)$$
$$= \frac{1}{2} \cdot \mathbb{E}[Y] = \frac{1}{2} \cdot 5 = 2.5$$

Example -- Elevator rides

The number X of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.

Law of total probability

Definition. Let *A* be an event and *Y* a discrete random variable. Then

$$P[A] = \sum_{y \in \Omega_Y} P(A|Y = y) p_Y(y)$$

Definition. Let *A* be an event and *Y* a continuous random variable. Then

$$P[A] = \int_{-\infty}^{\infty} P(A|Y = y) f_Y(y) dy$$

Example use of law of total probability

Suppose that the time until server 1 crashes is $X \sim Exp(\lambda)$ and the time until server 2 crashes is independent, with $Y \sim Exp(\mu)$.

What is the probability that server 1 crashes before server 2?

Example use of law of total probability

 $X \sim Exp(\lambda), Y \sim Exp(\mu).$

What is the probability that Y > X?

$$P(Y > X) = \int_{0}^{\infty} \Pr(Y > X | X = x) f_{X}(x) dx$$

$$= \int_{0}^{\infty} \Pr(Y > x | X = x) \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{\infty} \Pr(Y > x) \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu} \int_{0}^{\infty} (\lambda + \mu) \cdot e^{-\mu x} e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu}$$

31

Alternative approach

 $X \sim Exp(\lambda), Y \sim Exp(\mu).$ What is the probability that Y > X?

$$P(Y > X) = \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X,Y}(x, y) dy dx$$

$$= \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_X(x) \cdot f_Y(y) \mathrm{d}y \, \mathrm{d}x$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X=x,Y=y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$