CSE 312 Foundations of Computing II

21: Maximum Likelihood Estimation (MLE)

Agenda

- Wrap up on Law of Total Expectation and Law of Total Probability
- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Conditional Expectation

Definition. If *X* is a discrete random variable then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Note:

• Linearity of expectation still applies here $\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* be a random variable and *Y* be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Law of total probability

Definition. Let *A* be an event and *Y* a discrete random variable. Then

$$P[A] = \sum_{y \in \Omega_Y} P(A|Y = y) p_Y(y)$$

Definition. Let A be an event and Y a continuous random variable. Then

$$P[A] = \int_{-\infty}^{\infty} P(A|Y = y) f_Y(y) dy$$

Example use of law of total probability

Suppose that the time until server 1 crashes is $X \sim Exp(\lambda)$ and the time until server 2 crashes is independent, with $Y \sim Exp(\mu)$.

What is the probability that server 1 crashes before server 2?

$$P(Y > x) = \int -P(Y \le x)$$

Example use of law of total probability

 $X \sim Exp(\lambda), Y \sim Exp(\mu).$ What is the probability that Y > X?

$$P(Y > X) = \int_{0}^{\infty} \Pr(Y > X | X = x) f_{X}(x) dx$$

$$= \int_{0}^{\infty} \Pr(Y > x | X = x) \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{\infty} \Pr(Y > x) \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu} \int_{0}^{\infty} (\lambda + \mu) \cdot e^{-\mu x} e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu}$$

₽(Y>X

4 map

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal	$p_X(x) = \sum p_{X,Y}(x,y)$	$f_{\mathbf{y}}(\mathbf{x}) = \int_{-\infty}^{\infty} f_{\mathbf{y},\mathbf{y}}(\mathbf{x},\mathbf{y}) d\mathbf{y}$
PMF/PDF	$\frac{y}{y}$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
PMF/PDF		
Conditional	$E[X Y = y] = \sum x n_{y+y} (x y)$	$E[Y Y = y] = \int_{-\infty}^{\infty} y f(y y) dy$
Expectation	$\sum_{x} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x$	$E[X I - y] - \int_{-\infty}^{x} f(x y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Agenda

- Idea: Estimation <
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics

Recap Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown</u> p

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Recap More generally ...

In estimation we often

- Assume: we know the type of the random variable that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Statistics: Parameter Estimation – Workflow

Example: coin flip distribution with unknown θ = probability of heads

Observation: *HTTHHHHTHTHTHTHTHTHTTTTHT*

Goal: Estimate

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence of flips

TTHTHTTH

Given this data, what would you estimate *p* is?

28

How can you argue "objectively" that this your estimate is the best estimate?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

see outcome HHTHH.
me your best guess
he value of the unknown
ther
$$\theta$$
 (a.k.a. p) is 4/5. Is
ome way that you can
objectively" that this is
t estimate?
 $d_{1} = 0$
 $d_{2} = 0$
 $d_{3} = 0$

Likelihood

Say we see outcome *HHTHH*.

 $\mathcal{L}(HHTHH; \theta) = \theta^4(1-\theta)$

Probability of observing the outcome *HHTHH* if θ = prob. of heads.

For a fixed outcome HHTHH, this is a function of θ .

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$

Example: Say we see outcome *HHTHH*.

 $\mathcal{L}(HHTHH;\theta) = P(H;\theta) \cdot P(H;\theta) \cdot P(T;\theta) \cdot P(H;\theta) \cdot P(H;\theta) = \theta^{4}(1-\theta)$

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^{n} P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ
 - A function of x_1, \ldots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, x_2, ..., x_n; \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> $x_1, ..., x_n$ and θ , but different role/interpretation

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, x_2, \ldots, x_n; \hat{\theta})$ is maximized!

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(x_1, x_2, \dots, x_n; \theta)$$

Example – Coin Flips

Observe: Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

 $\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$

Goal: find θ that maximizes $\mathcal{L}(x_1, \dots, x_n; \theta)$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n; \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

loch is maximized at some of his

Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\ln \mathcal{L}(x_1, \dots, x_n; \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$

Useful log properties

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

29

Example – Coin Flips

ln(ab) = ln(a) + ln(b) ln(a/b) = ln(a) - ln(b) $ln(a^b) = b \cdot ln(a)$

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L} = \ln \theta^{n_H} + \ln (1 - \theta)^{n_T}$$

$$= \ln \theta^{n_H} + \ln (1 - \theta)^{n_T}$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

 $\frac{d}{dx}$ lmx = $\frac{1}{x}$

$$\mathcal{L}(x_{1}, ..., x_{n}; \theta) = \theta^{n_{H}} (1 - \theta)^{n_{T}}$$

$$\ln \mathcal{L}(x_{1}, ..., x_{n}; \theta) = n_{H} \ln \theta + n_{T} \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, ..., x_{n}; \theta) = n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta}$$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, ..., x_{n}; \theta) = 0$
So we need $n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta} = 0$

$$31$$

General Recipe

- 1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, ..., x_n; \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n; \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE 🗲

The Continuous Case

Given *n* (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of <u>densities</u>

 $\mathbb{P}(X \land x) = \mathcal{P}(x) \, \mathrm{d} x$

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

Agenda

- MLE for Normal Distribution <
- Unbiased and Consistent Estimators
- Odds and ends

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ? [i.e., we are given the <u>promise</u> that the variance is 1]

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

lnex = x

Example – Gaussian Parameters

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

Normal outcomes x_1, \dots, x_n , known variance $\sigma^2 = 1$

Goal: estimate θ , the expectation $\begin{array}{c}
\text{O.1 032-05}\\
\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{(x_i-\theta)^2}{2}}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i-\theta)^2}{2}} \\
\text{ML} = \ln\left(\left(\frac{1}{\sqrt{2\pi}}\right)^n + \sum_{i=1}^n e^{-\frac{(x_i-\theta)^2}{2}}\right) = \ln\left(\frac{1}{\sqrt{2\pi}}\right)^n + \ln\left(\frac{1}{\sqrt{2\pi}}$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

42

Example – Gaussian Parameters

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$

Example – Gaussian Parameters

Goal: estimate θ = expectation

44

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$
Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta) = \sum_{i=1}^n (x_i - \theta) = \left(\sum_{i=1}^n x_i\right) - n\theta$$
So... solve $\sum_{i=1}^n x_i - n\hat{\theta} = 0$ for $\hat{\theta}$

$$\hat{\theta} = \frac{\sum_i^n x_i}{n}$$
In other words, MLE is the sample mean of the data.

Next: *n* samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. <u>Most likely</u> μ and σ^2 ?

Two-parameter optimization

ln(ab) = ln(a) + ln(b) ln(a/b) = ln(a) - ln(b) $ln(a^b) = b \cdot ln(a)$

Normal outcomes x_1, \ldots, x_n

Goal: estimate θ_{μ} = expectation and θ_{σ^2} = variance

Two-parameter estimation

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = -\frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

Find pair $\hat{\theta}_{\mu}, \hat{\theta}_{\sigma^2}$ that maximizes $\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2})$ $\hat{\partial} \int \ln f = 0$ $\hat{\partial} \hat{\partial} \int \ln f = 0$ $\hat{\partial} \hat{\partial} \int \ln f = 0$

47

Two-parameter estimation

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = -\frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

We need to find a solution $\hat{\theta}_{\mu}$, $\hat{\theta}_{\sigma^2}$ to

$$\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = 0$$
$$\frac{\partial}{\partial \theta_{\sigma^2}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = 0$$

MLE for Expectation
$$\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = -n \frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

$$\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = \frac{1}{\theta_{\sigma^2}} \sum_{i}^{n} (x_i - \theta_{\mu}) = 0$$

$$\begin{aligned} \text{MLE for Expectation} \\ \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) &= -n \frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}} \\ &\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = \frac{1}{\theta_{\sigma^2}} \sum_{i=1}^n (x_i - \theta_{\mu}) = 0 \end{aligned}$$

In other words, MLE of expectation is $\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$ (again) the sample mean of the data, regardless of θ_{G}

What about the variance?

MLE for Variance

$$\ln \mathcal{L}(x_{1}, ..., x_{n}; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}) = -n \frac{\ln(2\pi \theta_{\sigma^{2}})}{2} - \sum_{i=1}^{n} \frac{(x_{i} - \hat{\theta}_{\mu})^{2}}{2\theta_{\sigma^{2}}}$$
$$= -n \frac{\ln 2\pi}{2} - n \frac{\ln \theta_{\sigma^{2}}}{2} - \frac{1}{2\theta_{\sigma^{2}}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{\mu})^{2}$$
$$\frac{\partial}{\partial \theta_{\sigma^{2}}} \ln \mathcal{L}(x_{1}, ..., x_{n}; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}) = -\frac{n}{2\theta_{\sigma^{2}}} + \frac{1}{2\theta_{\sigma^{2}}^{2}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{\mu})^{2} = 0$$

$$\hat{\theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta}_{\mu})^2$$

In other words, MLE of variance is the *population variance* of the data.

Likelihood – Continuous Case

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$

Normal outcomes x_1, \ldots, x_n

MLE estimator for expectation

MLE estimator for **variance**

General Recipe

- 1. Input Given *n* i.i.d. samples x_1, \ldots, x_n from parametric model with parameter θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$. For discrete $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$

 - For continuous $\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n; \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n; \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

2 Int

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

١

Note: This expectation is over the samples X_1, \dots, X_n

56

Three samples from $U(0, \theta)$

Example – Coin Flips

Recall:
$$\hat{\theta}_{\mu} = \frac{n_H}{n}$$

Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails

Fact. $\hat{\theta}_{\mu}$ is unbiased

i.e., $\mathbb{E}[\hat{\theta}_{\mu}] = p$, where p is the probability that the coin turns out head.

Why?

Because $\mathbb{E}[n_H] = np$ when p is the true probability of heads.

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance – Biased!

$$\widehat{\Theta}_{\sigma^2}$$
 is "consistent"

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance – Biased!

Sample variance – Unbiased!

 $\widehat{\Theta}_{\sigma^2}$ converges to same value as S_n^2 , i.e., σ^2 , as $n \to \infty$. $\widehat{\Theta}_{\sigma^2}$ is "consistent"

61

Why does it matter?

- When statisticians are estimating a variance from a sample, they usually divide by n-1 instead of n.
- They and we not only want good estimators (unbiased, consistent)
 - They/we also want confidence bounds
 - Upper bounds on the probability that these estimators are far the truth about the underlying distributions
 - Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the best thing to use to get them (unless the variance is known)