
CSE 312

Foundations of Computing II
21: Maximum Likelihood Estimation (MLE)
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Agenda

• Wrap up on Law of Total Expectation and Law of Total 
Probability

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Conditional Expectation
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Definition. If	 " is a discrete random variable then the conditional 
expectation of "	given event # is

$ "	 #] = '
!	 ∈	$!

( ⋅ * " = (	 #)

Note:

• Linearity of expectation still applies here
$ ," + ./ + 0	 #] = ,	$ "	 #] + .	$ /	 #] + 0



Law of Total Expectation
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Law of Total Expectation (event version). Let " be a random variable 
and let events #%, … , #& partition the sample space. Then,

$["] = '
'(%

&
$ "	 #' ⋅ *(#')

Law of Total Expectation (random variable version). Let " be a 
random variable and / be a discrete random variable. Then,

$["] = '
)	∈$"

$ "	 / = 5 ⋅ *(/ = 5)

H An



Law of total probability
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Definition. Let	# be an event and	/  a continuous random variable. 
Then

*[#] = 6
*+

+
* # / = 5 7, 5 d5

Definition. Let	# be an event and	/ a discrete random variable. Then

*[#] = '
)∈$"

* # / = 5 9, 5

HANI



Example use of law of total probability
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Suppose that the time until server 1 crashes is " ∼ ;(9 <  and the time 
until server 2 crashes is  independent, with  / ∼ ;(9 = .
What is the probability that server 1 crashes before server 2?

P X Y
1



Example use of law of total probability
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! ∼ #$% & , ( ∼ #$% ) .
What is the probability that ( > !?

+ ( > ! = -
!

"
Pr ( > !	 ! = $)	2# $ 3$

= -
!

"
Pr ( > $	 ! = $)	 &4$%&	 3$

= -
!

"
Pr(( > $)&4$%&	 3$

= -
!

"
4$'&	&	4$%&	 3$

= &
& + )-!

"
& + ) ⋅ 4$'&	4$%&	3$

= &
& + )

P Y x 1 PCIE

PETES
é ax

indep

9
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Alternative approach
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" ∼ ;(9 < , / ∼ ;(9 = .
What is the probability that/ > "?

+ ( > ! = -
&(!

"
-
)(&

"
2#,+ $, 8 dy	d$	

= -
&(!

"
-
)(&

"
2# $ ⋅ 2+(8)dy	d$	

fx 9 f x fyly
y x
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Reference Sheet (with continuous RVs)
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Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Probability vs Statistics

14

Probability
Given model, predict 

data 
Ber % = 0.5 +(@AA@AA)

Statistics
Given data, predict 

model 
@AA@AABer % =? ?



Recap Formalizing Polls
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We assume that poll answers "%, … , "&	~	Ber(9) i.i.d. for unknown 9   

Goal: Estimate 9

We did this by computing  9̂ = %
&∑'(%

& "'



Recap More generally …

In estimation we often …. 
• Assume: we know the type of the random variable that we 

are observing independent samples from
– We just don’t know the parameters, e.g.

• the bias % of a random coin Bernoulli(%)
• The arrival rate & for the Poisson(&)	or Exponential(&)
• The mean ) and variance N of a normal O(), N)

• Goal: find the “best” parameters to fit the data

16



Statistics: Parameter Estimation – Workflow
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Distribution 
-(/; 1)

Independent 
samples 
"%, … , "& 
from *((; F)

Estimation
Algorithm

GF

Parameter 
estimate

, = unknown parameter

Example: coin flip distribution with unknown P = probability of heads  

Observation:  A@@AAA@A@A@@@@A@A@@@@@A@

Goal: Estimate P

Xi Xn



Example

Suppose we have a mystery coin with some probability % of coming up heads. We 
flip the coin 8 times, independent of other flips, and see the following sequence of 
flips

@@A@A@@A

Given this data, what would you estimate % is?

20

How can you argue 
“objectively” that this your 
estimate is the best estimate?



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Likelihood

22

You tell me your best guess 
about the value of the unknown 
parameter P (a.k.a. %) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate?

Say we see outcome AA@AA. 
What is likelihood ofseeing

HATHA y untranpemiso

L 1 0 04 05

What maximizes this for

to 20 403 504 0

403 504



Likelihood
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ℒ IIJII	; 	F = F3(1 − F)
Probability of observing the 
outcome AA@AA if P = prob. 
of heads. 

For a fixed outcome AA@AA	, 
this is a function of P. 

Say we see outcome AA@AA. 
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Likelihood of Different Observations
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Definition. The likelihood of independent observations (%, … . , (&	is

ℒ (%, (4, … , (&	; F =N
'(%

&
*(('; F)

(Discrete case)

Example:
Say we see outcome AA@AA. 

ℒ IIJII	; F = * I; F ⋅ * I; F ⋅ * J; F ⋅ * I; F ⋅ * I; F = 	F3(1 − F)



Likelihood vs. Probability

• Fixed !: probability ∏!"#
$ #(%!; !)	that dataset %#, … , %$  is 

sampled by distribution with parameter !
–  A function of (%, … , (&

• Fixed %#, … , %$: likelihood ℒ %#, %%, … , %$ 	; ! 	that parameter 
! explains dataset %#, … , %$.
–  A function of F

These notions are the same number if we fix both %#, … , %$  
and !, but different role/interpretation 

25



Likelihood of Different Observations

26

Definition. The likelihood of independent observations (%, … . , (&	is

ℒ (%, (4, … , (&	; F =N
'(%

&
*(('; F)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data (%, … . , (&, find 
GF	such that ℒ (%, (4, … , (&	; GF is maximized!

GF = 	 argmax
5

	 ℒ (%, (4, … , (&	; F



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with ,&  heads, ,'  tails
– i.e., S6 + S7 = S 

Goal: find F that maximizes	 ℒ (%, … , (&	; F

27

Goal: estimate F = prob. heads. 

ℒ (%, … , (&	; F = 	F&# 1 − F &$

It HTH



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with ,&  heads, ,'  tails
– i.e., S6 + S7 = S 

28

T
TF ℒ (%, … , (&	; F =? ? ?

Goal: estimate F = prob. heads. 

While it is possible to compute this derivative, it’s not always 
nice since we are working with products.

ℒ (%, … , (&	; F = F&# 1 − F &$



Log-Likelihood
We can save some work if we use the log-likelihood instead of the likelihood 
directly.

Useful log properties
ln #$ = ln # + ln $
ln #/$ = ln # − ln($)	

ln #! = $ ⋅ ln(#)
29

Definition. The log-likelihood of independent observations 
(%, … . , (&	is

ln ℒ (%, … , (&	; F = lnN
'(%

&
*(('; F) = '

'(%

&
ln *(('; F)

Ind is maximized at same o L is



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with ,&  heads, ,'  tails
– i.e., S6 + S7 = S 

30

ℒ (%, … , (&	; F = 	F&# 1 − F &$

Goal: estimate F = prob. heads. 

ln '( = ln ' + ln (
ln '/( = ln ' − ln(()	

ln '! = ( ⋅ ln(')

In eno en 1 0

hit eno nt In
1 0



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with ,&  heads, ,'  tails
– i.e., S6 + S7 = S 

31

ℒ (%, … , (&	; F = F&# 1 − F &$

Goal: estimate F = prob. heads. 

ln ℒ (%, … , (&	; F = S6 ln F + S7 ln(1 − F)
T
TF ln ℒ (%, … , (&	; F = S6 ⋅

1
F − S7 ⋅

1
1 − F

Want value GF of F s.t. 8
85 ln ℒ (%, … , (&	; F = 0	

So we need S6 ⋅ %95 − S7 ⋅
%

%*95 = 0

Solving gives 
!" = !!

!  

enx



General Recipe

1. Input Given ! i.i.d. samples "#, … , "$ from parametric model with 
parameter %.
2. Likelihood Define your likelihood ℒ "#, … , "$	; % .
– For discrete   ℒ #", … , ##	; ( = ∏$%"

# + #$	; (
3. Log  Compute lnℒ "#, … , "$	; %
4. Differentiate Compute (() ln ℒ "#, … , "$	; %
5. Solve for +% by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Brain Break

33



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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The Continuous Case

Given , (independent) samples %#, … , %$  from (continuous) 
parametric model - %!; !  which is now a family of densities

35

Definition. The likelihood of independent observations (%, … . , (&	is

ℒ (%, … , (&	; F =N
'(%

&
7(('; F)

Replace pmf with pdf!



Why density?

• Density ≠ probability, but:
– For maximizing likelihood, we really only care about relative 

likelihoods, and density captures that
– has desired property that likelihood increases with better fit to the 

model

36

Pr ax x dx



Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Odds and ends
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0−1−2−3−4 1 2 3 4 5 6

W samples $-, … , $. ∈ ℝ from Gaussian O(), 1). Most likely )?
[i.e., we are given the promise that the variance is 1]



41

0−1−2−3−4 1 2 3 4 5 6

S samples (%, … , (& ∈ ℝ from Gaussian [(=, 1). Most likely =?



Example – Gaussian Parameters

Normal outcomes %#, … , %$, known variance /% = 1 

42

ℒ $-, … , $.	; P =]
/(-

. 1
2^ 4

$ &!$0 "
1 = 1

2^
.
]
/(-

.
4$

&!$0 "
1

Goal: estimate F, the expectation

ln ℒ $-, … , $.	; P = − W ln 2^2 −_
/(-

. $/ − P 1

2

ln '( = ln ' + ln (
ln '/( = ln ' − ln(()	

ln '! = ( ⋅ ln(')

fly
e
2

he

unknownparam 0
mean

0.1032 0.5

end en 1 5 E in e



Example – Gaussian Parameters

Normal outcomes (%, … , (&, known variance \4 = 1 

43

Goal: estimate F= expectation

ln ℒ $-, … , $.	; P = − W ln 2^2 −_
/(-

. $/ − P 1

2
Note: 2

20
&!$0 "

1 = -
1 ⋅ 2 ⋅ $/ − P ⋅ −1 = P − $/ 



Example – Gaussian Parameters

Normal outcomes (%, … , (&, known variance \4 = 1 

44

Goal: estimate F= expectation

ln ℒ $-, … , $.	; P = − W ln 2^2 −_
/(-

. $/ − P 1

2

T
TF ln ℒ (%, … , (&	; F ='

'(%

&
((' − F) ='

'(%

&
(' − SF

Note: 2
20

&!$0 "

1 = -
1 ⋅ 2 ⋅ $/ − P ⋅ −1 = P − $/ 

GF = ∑'& ('
S

In other words, MLE is the 
sample mean of the data.

So… solve  ∑'(%& (' − S GF = 0 for GF 

d
X 0 450
t.it no



0

0.1

0.2

0.3

0.4

0.5

45

0−1−2−3−4 1 2 3 4 5 6

Next: , samples %#, … , %$ ∈ ℝ from Gaussian 4(5, /%). 
Most likely 5 and /%? 



Two-parameter optimization

46

Normal outcomes %#, … , %$
Goal: estimate F:  = expectation and F;1 	= variance 

ℒ (%, … , (&	; F: , F;1 = 1
2^F;1

&
N
'(%

&
_*

!2*53
4

4551

ln ℒ (%, … , (&	; F: , F;1 =

= −S ln(2^ F;1)2 −'
'(%

& (' − F:
4

2F;1

ln '( = ln ' + ln (
ln '/( = ln ' − ln(()	

ln '! = ( ⋅ ln(')

82

m



Two-parameter estimation

ln ℒ (%, … , (&	; F: , F;1 = − ln(2^ F;1)2 −'
'(%

& (' − F:
4

2F;1

Find pair GF: , GF;1  that maximizes ln	ℒ (%, … , (&	; F: , F;1

47

Jonah 0

2
k



Two-parameter estimation

ln ℒ (%, … , (&	; F: , F;1 = − ln(2^ F;1)2 −'
'(%

& (' − F:
4

2F;1
We need to find a solution GF: , GF;1  to

T
TF:

ln ℒ (%, … , (&	; F: , F;1 = 0
T

TF;1
ln ℒ (%, … , (&	; F: , F;1 = 0

48



MLE for Expectation

49

ln ℒ $-, … , $.	; P' , P3# = −W ln(2^ P3#)2 −_
/(-

. $/ − P'
1

2P3#

T
TF:

ln ℒ (%, … , (&	; F: , F;1 = 1
F;1

'
'

&
((' − F:) = 0



MLE for Expectation

50

ln ℒ $-, … , $.	; P' , P3# = −W ln(2^ P3#)2 −_
/(-

. $/ − P'
1

2P3#

T
TF:

ln ℒ (%, … , (&	; F: , F;1 = 1
F;1

'
'

&
((' − F:) = 0

GF: =
∑'& ('
S

In other words, MLE of expectation is 
(again) the sample mean of the data, 
regardless of F4

What about the variance?

62



MLE for Variance

51

ln ℒ $-, … , $.	; P̀' , P3# = −W ln(2^ P3#)2 −_
/(-

. $/ − P̀'
1

2P3#

T
TF;1

ln ℒ (%, … , (&	; GF: , F;1 =

GF;1 =
1
S''(%

&
(' − GF:

4 In other words, MLE of variance is the 
population variance of the data.

− S
2F;1

+ 1
2F;14

'
'(%

&
(' − GF:

4

= −W ln 2^2 − W ln P3#2 − 1
2P3#

_
/(-

.
$/ − P̀'

1

= 0

XXXXX



Likelihood – Continuous Case

52

Definition. The likelihood of independent observations (%, … . , (&	is

ℒ (%, … , (&	; F =N
'(%

&
7(('; F)

Normal outcomes %#, … , %$  

GF;1 =
1
S'
'(%

&
(' − GF:

4GF: =
∑'& ('
S

MLE estimator for 
expectation

MLE estimator for 
variance



General Recipe

1. Input Given , i.i.d. samples #", … , ## from parametric model with 
parameter (.
2. Likelihood Define your likelihood ℒ #", … . , ## 	( .

– For discrete  ℒ /!, … , /"	; 1 = ∏678
9 , -6	; 0

– For continuous ℒ /!, … , /"	; 1 = ∏678
9 1 -6	; 0

3. Log  Compute lnℒ (%, … , (&	; F
4. Differentiate Compute &&' lnℒ (%, … , (&	; F
5. Solve for 0( by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.

53

8 6,993

end 0
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This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Sword-billed_hummingbird
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Intuition and Bigger Picture
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When is an estimator good?

56

Definition. An estimator of parameter F is an unbiased estimator if

$ GF& = F.

Distribution 
-(/; 1)

Independent 
samples 
"%, … , "& 
from *((; F)

Estimation
Algorithm

GF&

Parameter 
estimate

, = unknown parameter

Note: This expectation is over the samples !-, … , !.



Three samples from 6(0, !) 

57



Example – Coin Flips

Coin-flip outcomes %#, … , %$, with ,&  heads, ,'  tails

58

Recall: GF: = &#
&  

Fact. GF:  is unbiased

i.e., a P̀' = %, where % is the probability that the coin turns out head. 

Why?

Because a W4 = W% when % is the true probability of heads.



Consistent Estimators & MLE

59

Definition. An estimator is unbiased if $ GF& = F for all S ≥ 1.

Definition. An estimator is consistent if lim&→+$ GF& = F.

Theorem. MLE estimators are consistent. (But not necessarily 
unbiased)

Distribution 
-(/; 1)

Independent 
samples 
"%, … , "& 
from *((; F)

Estimation
Algorithm

GF&

Parameter 
estimate

, = unknown parameter



Example – Consistency 

60

Normal outcomes "%, … , "&  i.i.d. according to [(=, \4)  

bΘ@4 =
1
S''(%

&
"' − bΘ:

4

Assume: \4 > 0

Population variance – Biased!

bΘ@4  is “consistent”



Example – Consistency 
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Normal outcomes "%, … , "&  i.i.d. according to [(=, \4)  

bΘ@4 =
1
S''(%

&
"' − bΘ:

4

Assume: \4 > 0

d&4 =
1

S − 1''(%

&
"' − bΘ:

4

Sample variance – Unbiased!

bΘ@4  converges to same value as d&4, i.e., \4, as S → ∞.

Population variance – Biased!

bΘ@4  is “consistent”



Why does it matter?

• When statisticians are estimating a variance from a sample, they 
usually divide by S−1 instead of S. 

• They and we not only want good estimators (unbiased, consistent)
– They/we also want confidence bounds

• Upper bounds on the probability that these estimators are far the truth 
about the underlying distributions

– Confidence bounds are just like what we wanted for our polling problems, but 
CLT is usually not the  best thing to use to get them (unless the variance is 
known)
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