CSE 312
Foundations of Computing II
21: Maximum Likelihood Estimation (MLE)

## Agenda

- Wrap up on Law of Total Expectation and Law of Total Probability
- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## Conditional Expectation

Definition. If $X$ is a discrete random variable then the conditional expectation of $X$ given event $A$ is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Note:

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

## Law of Total Expectation

Law of Total Expectation (event version). Let $X$ be a random variable and let events $A_{1}, \ldots, A_{n}$ partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let $X$ be a random variable and $Y$ be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

## Law of total probability

Definition. Let $A$ be an event and $Y$ a discrete random variable. Then

$$
P[A]=\sum_{y \in \Omega_{Y}} P(A \mid Y=y) p_{Y}(y)
$$

Definition. Let $A$ be an event and $Y$ a continuous random variable. Then

$$
P[A]=\int_{-\infty}^{\infty} P(A \mid Y=y) f_{Y}(y) \mathrm{d} y
$$

## Example use of law of total probability

Suppose that the time until server 1 crashes is $X \sim \operatorname{Exp}(\lambda)$ and the time until server 2 crashes is independent, with $Y \sim \operatorname{Exp}(\mu)$.
What is the probability that server 1 crashes before server 2?

## Example use of law of total probability

$X \sim \operatorname{Exp}(\lambda), Y \sim \operatorname{Exp}(\mu)$.
What is the probability that $Y>X$ ?

$$
\begin{aligned}
P(Y>X) & =\int_{0}^{\infty} \operatorname{Pr}(Y>X \mid X=x) f_{X}(x) d x \\
& =\int_{0}^{\infty} \operatorname{Pr}(Y>x \mid X=x) \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \operatorname{Pr}(Y>x) \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} d x \\
& =\frac{\lambda}{\lambda+\mu} \int_{0}^{\infty}(\lambda+\mu) \cdot e^{-\mu x} e^{-\lambda x} d x \\
& =\frac{\lambda}{\lambda+\mu}
\end{aligned}
$$

## Alternative approach

$$
X \sim \operatorname{Exp}(\lambda), Y \sim \operatorname{Exp}(\mu)
$$

What is the probability that $Y>X$ ?

$$
\begin{aligned}
P(Y>X) & =\int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X, Y}(x, y) \mathrm{dy} \mathrm{~d} x \\
& =\int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X}(x) \cdot f_{Y}(y) \mathrm{dy} \mathrm{~d} x
\end{aligned}
$$

## Reference Sheet (with continuous RVs)

|  | Discrete | Continuous |
| :--- | :---: | :---: |
| Joint PMF/PDF | $p_{X, Y}(x, y)=P(X=x, Y=y)$ | $f_{X, Y}(x, y) \neq P(X=x, Y=y)$ |
| Joint CDF | $F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$ | $F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$ |
| Normalization | $\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$ | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$ |
| Marginal <br> PMF/PDF | $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$ | $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ |
| Expectation | $E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$ | $E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$ |
| Conditional <br> PMF/PDF | $p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$ | $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ |
| Conditional <br> Expectation | $E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$ | $E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$ |
| Independence | $\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ | $\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ |

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## Probability vs Statistics



## Recap Formalizing Polls

We assume that poll answers $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown $p$

Goal: Estimate $p$

We did this by computing $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

## Recap More generally ...

In estimation we often ....

- Assume: we know the type of the random variable that we are observing independent samples from
- We just don't know the parameters, e.g.
- the bias $p$ of a random coin $\operatorname{Bernoulli}(p)$
- The arrival rate $\lambda$ for the Poisson $(\lambda)$ or Exponential $(\lambda)$
- The mean $\mu$ and variance $\sigma$ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data


## Statistics: Parameter Estimation - Workflow



Example: coin flip distribution with unknown $\theta=$ probability of heads
Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate $\theta$

## Example

Suppose we have a mystery coin with some probability $p$ of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence of flips

## TTHTHTTH

Given this data, what would you estimate $p$ is?

How can you argue
"objectively" that this your estimate is the best estimate?

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## Likelihood

Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter $\theta$ (a.k.a. p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

## Likelihood

Say we see outcome HHTHH.
$\mathcal{L}($ HHTHH $; \theta)=\theta^{4}(1-\theta)$
Probability of observing the outcome HHTHH if $\theta=$ prob. of heads.

For a fixed outcome HHTHH, this is a function of $\theta$.

Max Prob of seeing HHTHH


## Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Example:
Say we see outcome HHTHH.
$\mathcal{L}(H H T H H ; \theta)=P(H ; \theta) \cdot P(H ; \theta) \cdot P(T ; \theta) \cdot P(H ; \theta) \cdot P(H ; \theta)=\theta^{4}(1-\theta)$

## Likelihood vs. Probability

- Fixed $\theta$ : probability $\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$ that dataset $x_{1}, \ldots, x_{n}$ is sampled by distribution with parameter $\theta$
- A function of $x_{1}, \ldots, x_{n}$
- Fixed $x_{1}, \ldots, x_{n}$ : likelihood $\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ that parameter $\theta$ explains dataset $x_{1}, \ldots, x_{n}$.
- A function of $\theta$

These notions are the same number if we fix both $x_{1}, \ldots, x_{n}$ and $\theta$, but different role/interpretation

## Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data $x_{1}, \ldots ., x_{n}$, find $\hat{\theta}$ such that $\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$

Goal: find $\theta$ that maximizes $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=? ? ?$

While it is possible to compute this derivative, it's not always nice since we are working with products.

## Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\ln \prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln P\left(x_{i} ; \theta\right)
$$

Useful log properties

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

## Example - Coin Flips

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

- i.e., $n_{H}+n_{T}=n$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=n_{H} \cdot \frac{1}{\theta}-n_{T} \cdot \frac{1}{1-\theta}$
Want value $\hat{\theta}$ of $\theta$ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=0$

Solving gives

$$
\hat{\theta}=\frac{n_{H}}{n}
$$

So we need $n_{H} \cdot \frac{1}{\widehat{\theta}}-n_{T} \cdot \frac{1}{1-\widehat{\theta}}=0$

## General Recipe

1. Input Given $n$ i.i.d. samples $x_{1}, \ldots, x_{n}$ from parametric model with parameter $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

## Brain Break



## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE


## The Continuous Case

Given $n$ (independent) samples $x_{1}, \ldots, x_{n}$ from (continuous) parametric model $f\left(x_{i} ; \theta\right)$ which is now a family of densities

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

## Why density?

- Density $\neq$ probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model


## Agenda

- MLE for Normal Distribution -
- Unbiased and Consistent Estimators
- Odds and ends
$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?
[i.e., we are given the promise that the variance is 1]

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?



## Example - Gaussian Parameters

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$
Goal: estimate $\theta$, the expectation
$\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}$

## Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Note: $\frac{\partial}{\partial \theta} \frac{\left(x_{i}-\theta\right)^{2}}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

## Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Note: $\frac{\partial}{\partial \theta} \frac{\left(x_{i}-\theta\right)^{2}}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

$$
\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\sum_{i=1}^{n}\left(x_{i}-\theta\right)=\sum_{i=1}^{n} x_{i}-n \theta
$$

So... solve $\sum_{i=1}^{n} x_{i}-n \hat{\theta}=0$ for $\hat{\theta}$

$$
\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n} \quad \begin{aligned}
& \text { In other words, MLE is the } \\
& \text { sample mean of the data. }
\end{aligned}
$$

Next: $n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Most likely $\mu$ and $\sigma^{2}$ ?


## Two-parameter optimization

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Normal outcomes $x_{1}, \ldots, x_{n}$
Goal: estimate $\theta_{\mu}=$ expectation and $\theta_{\sigma^{2}}=$ variance


$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=\left(\frac{1}{\sqrt{2 \pi \theta_{\sigma^{2}}}}\right)^{n} \prod_{i=1}^{n} e^{\frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}}}
$$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=
$$

$$
=-n \frac{\ln \left(2 \pi \theta_{\sigma^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}}
$$

## Two-parameter estimation

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=-\frac{\ln \left(2 \pi \theta_{\boldsymbol{\sigma}^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\boldsymbol{\sigma}^{2}}}
$$

Find pair $\hat{\theta}_{\mu}, \hat{\theta}_{\sigma^{2}}$ that maximizes $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)$

## Two-parameter estimation

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=-\frac{\ln \left(2 \pi \theta_{\boldsymbol{\sigma}^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}}
$$

We need to find a solution $\hat{\theta}_{\mu}, \hat{\theta}_{\sigma^{2}}$ to

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=0 \\
\frac{\partial}{\partial \theta_{\sigma^{2}}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=0
\end{gathered}
$$

MLE for Expectation

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=-n \frac{\ln \left(2 \pi \theta_{\sigma^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}}
$$

$$
\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=\frac{1}{\theta_{\sigma^{2}}} \sum_{i}^{n}\left(x_{i}-\theta_{\mu}\right)=0
$$

MLE for Expectation $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=-n \frac{\ln \left(2 \pi \theta_{\sigma^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}}$
$\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\sigma^{2}}\right)=\frac{1}{\theta_{\sigma^{2}}} \sum_{i}^{n}\left(x_{i}-\theta_{\mu}\right)=0$

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

In other words, MLE of expectation is (again) the sample mean of the data, regardless of $\theta_{2}$

What about the variance?

## MLE for Variance

$$
\begin{aligned}
& \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}\right)=-n \frac{\ln \left(2 \pi \theta_{\sigma^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}}{2 \theta_{\sigma^{2}}} \\
& =-n \frac{\ln 2 \pi}{2}-n \frac{\ln \theta_{\sigma^{2}}}{2}-\frac{1}{2 \theta_{\sigma^{2}}} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2} \\
& \frac{\partial}{\partial \theta_{\sigma^{2}}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}\right)=-\frac{n}{2 \theta_{\sigma^{2}}}+\frac{1}{2 \theta_{\sigma^{2}}^{2}} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}=0
\end{aligned}
$$

$$
\hat{\theta}_{\boldsymbol{\sigma}^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}
$$

In other words, MLE of variance is the population variance of the data.

## Likelihood - Continuous Case

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Normal outcomes $x_{1}, \ldots, x_{n}$

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

MLE estimator for expectation

$$
\hat{\theta}_{\boldsymbol{\sigma}^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}
$$

MLE estimator for variance

## General Recipe

1. Input Given $n$ i.i.d. samples $x_{1}, \ldots, x_{n}$ from parametric model with parameter $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. $\log$ Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.


## Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture


## When is an estimator good?

Parameter estimate

Independent
samples
$X_{1}, \ldots, X_{n}$
from $P(x ; \theta)$

$\theta=\underline{u n k n o w n ~ p a r a m e t e r ~}$

Definition. An estimator of parameter $\theta$ is an unbiased estimator if

$$
\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta
$$

Note: This expectation is over the samples $X_{1}, \ldots, X_{n}$

Three samples from $U(0, \theta)$

## Example - Coin Flips

## Recall: $\hat{\theta}_{\mu}=\frac{n_{H}}{n}$

Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails
Fact. $\hat{\theta}_{\mu}$ is unbiased
i.e., $\mathbb{E}\left[\hat{\theta}_{\mu}\right]=p$, where $p$ is the probability that the coin turns out head.

Why?
Because $\mathbb{E}\left[n_{H}\right]=n p$ when $p$ is the true probability of heads.

## Consistent Estimators \& MLE


$\theta=\underline{u n k n o w n ~ p a r a m e t e r ~}$
Definition. An estimator is unbiased if $\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$ for all $n \geq 1$.

Definition. An estimator is consistent if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$.

Theorem. MLE estimators are consistent.
(But not necessarily unbiased)

## Example - Consistency

Normal outcomes $X_{1}, \ldots, X_{n}$ i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance - Biased!
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

## Example - Consistency

Normal outcomes $X_{1}, \ldots, X_{n}$ i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Sample variance - Unbiased!
Population variance - Biased!
$\widehat{\Theta}_{\sigma^{2}}$ converges to same value as $S_{n}^{2}$, i.e., $\sigma^{2}$, as $n \rightarrow \infty$.
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

## Why does it matter?

- When statisticians are estimating a variance from a sample, they usually divide by $n-1$ instead of $n$.
- They and we not only want good estimators (unbiased, consistent)
- They/we also want confidence bounds
- Upper bounds on the probability that these estimators are far the truth about the underlying distributions
- Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the best thing to use to get them (unless the variance is known)


## Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture


## Another approach to parameter estimation

Assume we have prior distribution over what values of $\theta$ are likely. In other words...
assume that we know $P(\theta)=$ probability $\theta$ is used, for every $\theta$.
Maximum a-posteriori probability estimation (MAP)

$$
\begin{aligned}
\hat{\theta}_{\mathrm{MAP}} & =\operatorname{argmax}_{\theta} \frac{\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right) \cdot P(\theta)}{\sum_{\theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right) \cdot P(\theta)} \\
& =\operatorname{argmax}_{\theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right) \cdot P(\theta)
\end{aligned}
$$

Note when prior is constant, you get MLE!

## MLE and MAP in AI and Machine Learning

- MLE and MAP can be defined over distributions that are not the nice well-defined families as we have been considering here
- e.g. $\vec{\theta}$ might be the vector of parameters in some Neural Net or unknown entries in some Bayes Net.
- A variety of optimization methods and heuristic methods are used to compute/approximate them.


## General Recipe

1. Input Given $n$ i.i.d. samples $x_{1}, \ldots, x_{n}$ from parametric model with parameter $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. $\log \operatorname{Compute} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

