CSE 312

Foundations of Computing II

21: Maximum Likelihood Estimation (MLE)

Agenda

- Wrap up on Law of Total Expectation and Law of Total Probability
- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Conditional Expectation

Definition. If X is a discrete random variable then the **conditional expectation** of X given event A is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Note:

Linearity of expectation still applies here

$$\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \dots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$$

Law of total probability

Definition. Let A be an event and Y a discrete random variable. Then

$$P[A] = \sum_{y \in \Omega_Y} P(A|Y = y)p_Y(y)$$

Definition. Let A be an event and Y a continuous random variable. Then

$$P[A] = \int_{-\infty}^{\infty} P(A|Y = y) f_Y(y) dy$$

Example use of law of total probability

Suppose that the time until server 1 crashes is $X \sim Exp(\lambda)$ and the time until server 2 crashes is independent, with $Y \sim Exp(\mu)$.

What is the probability that server 1 crashes before server 2?

Example use of law of total probability

$$X \sim Exp(\lambda), Y \sim Exp(\mu).$$

What is the probability that Y > X?

$$P(Y > X) = \int_0^\infty \Pr(Y > X \mid X = x) f_X(x) dx$$

$$= \int_0^\infty \Pr(Y > x \mid X = x) \lambda e^{-\lambda x} dx$$

$$= \int_0^\infty \Pr(Y > x) \lambda e^{-\lambda x} dx$$

$$= \int_0^\infty e^{-\mu x} \lambda e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu} \int_0^\infty (\lambda + \mu) \cdot e^{-\mu x} e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda + \mu}$$

Alternative approach

$$X \sim Exp(\lambda), Y \sim Exp(\mu).$$

What is the probability that Y > X?

$$P(Y > X) = \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_{X,Y}(x, y) dy dx$$
$$= \int_{x=0}^{\infty} \int_{y=x}^{\infty} f_X(x) \cdot f_Y(y) dy dx$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X=x,Y=y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X\mid Y}(x\mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Agenda

- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics

Probability

Given model, predict data

P(THHTHH)

$$Ber(p = ??)$$

Statistics

Given data, predict model

THHTHH

Recap Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for unknown p

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Recap More generally ...

In estimation we often

- Assume: we know the type of the random variable that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Statistics: Parameter Estimation – Workflow

Example: coin flip distribution with unknown θ = probability of heads

Observation: HTTHHHTHTHTTTTHTHT

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence of flips

TTHTHTTH

Given this data, what would you estimate p is?

How can you argue "objectively" that this your estimate is the best estimate?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Likelihood

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Say we see outcome *HHTHH*.

$$\mathcal{L}(HHTHH; \theta) = \theta^4(1-\theta)$$

Probability of observing the outcome HHTHH if $\theta = \text{prob.}$ of heads.

For a fixed outcome HHTHH, this is a function of θ .

Max Prob of seeing HHTHH

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$$

Example:

Say we see outcome *HHTHH*.

$$\mathcal{L}(HHTHH;\theta) = P(H;\theta) \cdot P(H;\theta) \cdot P(T;\theta) \cdot P(H;\theta) \cdot P(H;\theta) = \theta^{4}(1-\theta)$$

Likelihood vs. Probability

- Fixed θ : probability $\prod_{i=1}^n P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ
 - A function of x_1, \dots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, x_2, ..., x_n; \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

These notions are the same number if we fix <u>both</u> $x_1, ..., x_n$ and θ , but different role/interpretation

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ such that $\mathcal{L}(x_1, x_2, \ldots, x_n; \hat{\theta})$ is maximized!

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(x_1, x_2, ..., x_n; \theta)$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

Goal: find θ that maximizes $\mathcal{L}(x_1, ..., x_n; \theta)$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n; \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations

$$x_1, \ldots, x_n$$
 is

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$$

Useful log properties

$$\ln(ab) = \ln(a) + \ln(b)$$
$$\ln(a/b) = \ln(a) - \ln(b)$$
$$\ln(a^b) = b \cdot \ln(a)$$

Example – Coin Flips

$$\ln(ab) = \ln(a) + \ln(b)$$
$$\ln(a/b) = \ln(a) - \ln(b)$$
$$\ln(a^b) = b \cdot \ln(a)$$

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob.}$ heads.

$$\mathcal{L}(x_1, ..., x_n; \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta) = 0$

So we need $n_H \cdot \frac{1}{\widehat{\rho}} - n_T \cdot \frac{1}{1-\widehat{\rho}} = 0$ ----

Solving gives

$$\hat{\theta} = \frac{n_H}{n}$$

General Recipe

- 1. **Input** Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, ..., x_n; \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

The Continuous Case

Given n (independent) samples $x_1, ..., x_n$ from (continuous) parametric model $f(x_i; \theta)$ which is now a family of <u>densities</u>

Definition. The **likelihood** of independent observations x_1, \dots, x_n is

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Replace pmf with pdf!

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Odds and ends

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ? [i.e., we are given the promise that the variance is 1]

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Example – Gaussian Parameters

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

Normal outcomes x_1, \dots, x_n , known variance $\sigma^2 = 1$

Goal: estimate θ , the expectation

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}} \right) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \prod_{i=1}^n e^{-\frac{(x_i - \theta)^2}{2}}$$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}$$

Example – Gaussian Parameters

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Note:
$$\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$$

Example – Gaussian Parameters

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n; \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Note:
$$\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n; \theta) = \sum_{i=1}^{n} (x_i - \theta) = \sum_{i=1}^{n} x_i - n\theta$$

So... solve
$$\sum_{i=1}^{n} x_i - n\hat{\theta} = 0$$
 for $\hat{\theta}$

$$\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$$

 $\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$ In other words, MLE is the sample mean of the data.

Next: n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. Most likely μ and σ^2 ?

Two-parameter optimization

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

Normal outcomes x_1, \dots, x_n

Goal: estimate θ_{μ} = expectation and θ_{σ^2} = variance

$$\mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = \left(\frac{1}{\sqrt{2\pi\theta_{\sigma^2}}}\right)^n \prod_{i=1}^n e^{\frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}}$$

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) =$$

$$=-n\frac{\ln(2\pi\,\theta_{\sigma^2})}{2}-\sum_{i=1}^n\frac{\left(x_i-\theta_{\mu}\right)^2}{2\theta_{\sigma^2}}$$

Two-parameter estimation

$$\ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = -\frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{\left(x_i - \theta_{\mu}\right)^2}{2\theta_{\sigma^2}}$$

Find pair $\hat{\theta}_{\mu}$, $\hat{\theta}_{\sigma^2}$ that maximizes $\ln \mathcal{L}(x_1, ..., x_n; \theta_{\mu}, \theta_{\sigma^2})$

Two-parameter estimation

$$\ln \mathcal{L}(x_1, ..., x_n; \theta_{\mu}, \theta_{\sigma^2}) = -\frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

We need to find a solution $\hat{\theta}_{\mu}$, $\hat{\theta}_{\sigma^2}$ to

$$\begin{split} \frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L} \big(x_1, \dots, x_n \, ; \theta_{\mu}, \theta_{\sigma^2} \big) &= 0 \\ \frac{\partial}{\partial \theta_{\sigma^2}} \ln \mathcal{L} \big(x_1, \dots, x_n \, ; \theta_{\mu}, \theta_{\sigma^2} \big) &= 0 \end{split}$$

MLE for Expectation

$$\ln \mathcal{L}(x_1, ..., x_n; \theta_{\mu}, \theta_{\sigma^2}) = -n \frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

$$\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = \frac{1}{\theta_{\sigma^2}} \sum_{i}^{n} (x_i - \theta_{\mu}) = 0$$

MLE for Expectation

$$\ln \mathcal{L}(x_1, ..., x_n; \theta_{\mu}, \theta_{\sigma^2}) = -n \frac{\ln(2\pi \theta_{\sigma^2})}{2} - \sum_{i=1}^n \frac{(x_i - \theta_{\mu})^2}{2\theta_{\sigma^2}}$$

$$\frac{\partial}{\partial \theta_{\mu}} \ln \mathcal{L}(x_1, \dots, x_n; \theta_{\mu}, \theta_{\sigma^2}) = \frac{1}{\theta_{\sigma^2}} \sum_{i}^{n} (x_i - \theta_{\mu}) = 0$$

$$\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$$

 $\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$ In other words, MLE of expectation is (again) the sample mean of the data, regardless of θ_{2}

What about the variance?

MLE for Variance

$$\ln \mathcal{L}(x_{1}, ..., x_{n}; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}) = -n \frac{\ln(2\pi \theta_{\sigma^{2}})}{2} - \sum_{i=1}^{n} \frac{(x_{i} - \hat{\theta}_{\mu})^{2}}{2\theta_{\sigma^{2}}}$$

$$= -n \frac{\ln 2\pi}{2} - n \frac{\ln \theta_{\sigma^{2}}}{2} - \frac{1}{2\theta_{\sigma^{2}}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{\mu})^{2}$$

$$\frac{\partial}{\partial \theta_{\sigma^{2}}} \ln \mathcal{L}(x_{1}, ..., x_{n}; \hat{\theta}_{\mu}, \theta_{\sigma^{2}}) = -\frac{n}{2\theta_{\sigma^{2}}} + \frac{1}{2\theta_{\sigma^{2}}^{2}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{\mu})^{2} = 0$$

$$\hat{\theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \hat{\theta}_{\mu} \right)^2$$

In other words, MLE of variance is the population variance of the data.

Likelihood – Continuous Case

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Normal outcomes x_1, \dots, x_n

$$\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$$

MLE estimator for **expectation**

$$\hat{\theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\theta}_{\mu})^2$$

MLE estimator for variance

General Recipe

- 1. **Input** Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, ..., x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

When is an estimator good?

 θ = <u>unknown</u> parameter

Definition. An estimator of parameter θ is an **unbiased estimator** if

$$\mathbb{E}[\hat{\theta}_n] = \theta.$$

Note: This expectation is over the samples $X_1, ..., X_n$

Three samples from $U(0, \theta)$

Example – Coin Flips

Recall: $\hat{\theta}_{\mu} = \frac{n_H}{n}$

Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails

Fact. $\hat{\theta}_{\mu}$ is unbiased

i.e., $\mathbb{E}[\hat{\theta}_{\mu}] = p$, where p is the probability that the coin turns out head.

Why?

Because $\mathbb{E}[n_H] = np$ when p is the true probability of heads.

Consistent Estimators & MLE

 $\theta = \underline{\text{unknown}}$ parameter

Definition. An estimator is **unbiased** if $\mathbb{E}[\hat{\theta}_n] = \theta$ for all $n \geq 1$.

Definition. An estimator is **consistent** if $\lim_{n\to\infty} \mathbb{E}[\hat{\theta}_n] = \theta$.

Theorem. MLE estimators are consistent.

(But not necessarily unbiased)

Parameter

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance – Biased!

 $\widehat{\Theta}_{\sigma^2}$ is "consistent"

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\Theta}_{\mu})^2$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance - Biased!

Sample variance - Unbiased!

- $\widehat{\Theta}_{\sigma^2}$ converges to same value as S_n^2 , i.e., σ^2 , as $n \to \infty$.
- $\widehat{\Theta}_{\sigma^2}$ is "consistent"

Why does it matter?

- When statisticians are estimating a variance from a sample, they usually divide by n-1 instead of n.
- They and we not only want good estimators (unbiased, consistent)
 - They/we also want confidence bounds
 - Upper bounds on the probability that these estimators are far the truth about the underlying distributions
 - Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the best thing to use to get them (unless the variance is known)

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

Another approach to parameter estimation

Assume we have prior distribution over what values of θ are likely. In other words...

assume that we know $P(\theta)$ = probability θ is used, for every θ .

Maximum a-posteriori probability estimation (MAP)

$$\hat{\theta}_{\text{MAP}} = \operatorname{argmax}_{\theta} \frac{\mathcal{L}(x_1, ..., x_n; \theta) \cdot P(\theta)}{\sum_{\theta} \mathcal{L}(x_1, ..., x_n; \theta) \cdot P(\theta)}$$

$$= \operatorname{argmax}_{\theta} \mathcal{L}(x_1, ..., x_n; \theta) \cdot P(\theta)$$

Note when prior is constant, you get MLE!

MLE and MAP in AI and Machine Learning

- MLE and MAP can be defined over distributions that are not the nice well-defined families as we have been considering here
 - e.g. $\vec{\theta}$ might be the vector of parameters in some Neural Net or unknown entries in some Bayes Net.
 - A variety of optimization methods and heuristic methods are used to compute/approximate them.

General Recipe

- 1. **Input** Given n i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, ..., x_n; \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, ..., x_n; \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.