
CSE 312

Foundations of Computing II
22: Wrap up MLE; Counting Distinct Elements

1



Agenda

• Recap MLE
• Unbiased and Consistent Estimators
• Distinct Elements Application

2



Estimation

3

Distribution 
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋( 
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm *𝜃( 𝑋', … , 𝑋(

Parameter 
estimate

𝜃 = unknown parameter



Likelihood of Different Observations

4

Definition. The likelihood of independent observations 𝑥', … . , 𝑥(	is

ℒ 𝑥', 𝑥), … , 𝑥(	; 𝜃 =/
*+'

(

𝑃(𝑥*; 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥', … . , 𝑥(, find 
*𝜃	such that ℒ 𝑥', 𝑥), … , 𝑥(	; *𝜃 is maximized!

*𝜃 = 	 argmax
,

	 ℒ 𝑥', 𝑥), … , 𝑥(	; 𝜃



General Recipe

1. Input Given 𝑛 i.i.d. samples 𝑥!, … , 𝑥" from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥', … , 𝑥(	; 𝜃 .

– For discrete  ℒ 𝑥!, … , 𝑥"	; 𝜃 = ∏!"#
$ 𝑃 𝑥!	; 𝜃

– For continuous ℒ 𝑥!, … , 𝑥"	; 𝜃 = ∏!"#
$ 𝑓 𝑥!	; 𝜃

3. Log  Compute lnℒ 𝑥', … , 𝑥(	; 𝜃

4. Differentiate Compute #
#$
lnℒ 𝑥', … , 𝑥(	; 𝜃

5. Solve for (𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.

5



Two-parameter optimization

6

Normal outcomes 𝑥), … , 𝑥*
Goal: estimate 𝜃1  = expectation and 𝜃𝝈𝟐 	= variance 

ℒ 𝑥!, … , 𝑥"	; 𝜃#, 𝜃𝝈𝟐 =
1

2𝜋𝜃𝝈𝟐

"

7
%&!

"

𝑒
'
("')#

$

*)𝝈𝟐

ln ℒ 𝑥", … , 𝑥#	; 𝜃$ , 𝜃𝝈𝟐 = −𝑛
ln(2𝜋 𝜃𝝈𝟐)

2
−=

%&!

"
𝑥% − 𝜃#

*

2𝜃𝝈𝟐

ln 𝑎𝑏 = ln 𝑎 + ln 𝑏
ln 𝑎/𝑏 = ln 𝑎 − ln(𝑏)	

ln 𝑎! = 𝑏 ⋅ ln(𝑎)



Likelihood – Continuous Case

7

Definition. The likelihood of independent observations 𝑥', … . , 𝑥(	is

ℒ 𝑥', … , 𝑥(	; 𝜃 =/
*+'

(

𝑓(𝑥*; 𝜃)

Normal outcomes 𝑥), … , 𝑥*  

*𝜃𝝈𝟐 =
1
𝑛
8
*+'

(

𝑥* − *𝜃1
)*𝜃1 =

∑*( 𝑥*
𝑛

MLE estimator for 
expectation

MLE estimator for 
variance



9
This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Sword-billed_hummingbird
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• Recap MLE
• Unbiased and Consistent Estimators
• Distinct Elements Application

10



When is an estimator good?

11

Definition. An estimator of parameter 𝜃 is an unbiased estimator if

𝔼 *𝜃( = 𝜃.

Distribution 
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋( 
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

Parameter 
estimate

𝜃 = unknown parameter

Note: This expectation is over the samples 𝑋", … , 𝑋#

*𝜃( 𝑋', … , 𝑋(



Three samples from 𝑈(0, 𝜃) 

12



Example – Coin Flips

Coin-flip outcomes 𝑥), … , 𝑥*, with 𝑛+  heads, 𝑛,  tails

13

Recall: *𝜃1 =
(2
(

 

Fact. *𝜃1  is unbiased

i.e., 𝔼 ,𝜃$ = 𝑝, where 𝑝 is the probability that the coin turns out head. 

Why?

Because 𝔼 𝑛& = 𝑛𝑝 when 𝑝 is the true probability of heads.



Consistent Estimators & MLE

14

Definition. An estimator is unbiased if 𝔼 *𝜃( = 𝜃 for all 𝑛 ≥ 1.

Definition. An estimator is consistent if lim
(→?

𝔼 *𝜃( = 𝜃.

Theorem. MLE estimators are consistent. (But not necessarily 
unbiased)

Distribution 
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋( 
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃(

Parameter 
estimate

𝜃 = unknown parameter



Example – Consistency 

15

Normal outcomes 𝑋', … , 𝑋(  i.i.d. according to 𝒩(𝜇, 𝜎))  

BΘ@3 =
1
𝑛
8
*+'

(

𝑋* − BΘ1
)

Assume: 𝜎) > 0

Population variance – Biased!

BΘ@3  is “consistent”



Example – Consistency 

16

Normal outcomes 𝑋', … , 𝑋(  i.i.d. according to 𝒩(𝜇, 𝜎))  

BΘ@3 =
1
𝑛
8
*+'

(

𝑋* − BΘ1
)

Assume: 𝜎) > 0

𝑆() =
1

𝑛 − 1
8
*+'

(

𝑋* − BΘ1
)

Sample variance – Unbiased!

BΘ@3  converges to same value as 𝑆(), i.e., 𝜎), as 𝑛 → ∞.

Population variance – Biased!

BΘ@3  is “consistent”



So what do we want?

• When statisticians are estimating a variance from a sample, they 
usually divide by 𝑛−1 instead of 𝑛. 

• They and we not only want good estimators (unbiased, consistent)
– They/we also want confidence bounds

• Upper bounds on the probability that these estimators are far the truth 
about the underlying distributions

– Confidence bounds are just like what we wanted for our polling problems, but 
CLT is usually not the only way or best way to get them (unless the variance is 
known)

17



Agenda

• Recap MLE
• Unbiased and Consistent Estimators
• Distinct Elements Application

18



Data mining – Stream Model

• In many data mining situations, data often not known ahead of time.
– Examples:   Google queries,  Twitter or Facebook status updates,  YouTube video 

views

• Think of the data as an infinite stream
• Input elements (e.g. Google queries) enter/arrive one at a time.

– We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Stream Model – Problem Setup

Input: sequence (aka.  “stream”) of 𝑁 elements	𝑥), 𝑥-, … , 𝑥.  
from a known universe 𝑈	(e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to 
right pass, where:
– Elements processed in real time
– Can’t store the full data ⇒ use minimal amount of storage while 

maintaining working “summary”



What can we compute?

Some functions are easy:
– Min
– Max 
– Sum
– Average

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4



Today: Counting distinct elements

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4

Application

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

• IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain 
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a 
certain term/item
– Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
• Naïve solution: As the data stream comes in, store all distinct IDs 

in a hash table. 
• Space requirement: Ω(𝑚)

YouTube Scenario: 𝑚 is huge!

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
𝑁	 = # of IDs in the stream = 11,    𝑚	 = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
𝑁	 = # of IDs in the stream = 11,    𝑚	 = # of distinct IDs in the stream = 5  



0 1
x𝑚 = 1

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

Detour – I.I.D. Uniforms



Detour – I.I.D. Uniforms

27

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

𝑚 = 1
0 1

x

𝑚 = 2
0 1

x x



0 1

0 1
x

0 1
x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

“Evenly spread out”

Detour – I.I.D. Uniforms



Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4
𝔼[min 𝑌', ⋯ , 𝑌B ] =

𝔼[min 𝑌' ] =

𝔼[min 𝑌', 𝑌) ] =

In general,  𝔼[min 𝑌', ⋯ , 𝑌A ] = '
AC'

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (iid) where do we expect the points to end up?
 



Detour – Min of I.I.D. Uniforms

In general,  𝔼[min 𝑌', ⋯ , 𝑌A ] = '
AC'

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (iid) where do we expect the points to end up?
 

What is some intuition for this?



Detour – Min of I.I.D. Uniforms

32

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (i.i.d.) where do we expect the points to end up?
 

e.g., what is 𝔼[min 𝑌', ⋯ , 𝑌A ]? 
 

CDF: Observe that min 𝑌', ⋯ , 𝑌A ≥ 𝑦 if and only if 𝑌' ≥ 𝑦,… , 𝑌A ≥ 𝑦

𝑃 min 𝑌', ⋯ , 𝑌A ≥ 𝑦 = 𝑃(𝑌' ≥ 𝑦,… , 𝑌A ≥ 𝑦)

= 𝑃 𝑌' ≥ 𝑦 ⋯𝑃(𝑌A ≥ 𝑦) (Independence)

= 1 − 𝑦 A

𝑦 ∈ [0,1]

⇒ 𝑃 min 𝑌', ⋯ , 𝑌A ≤ 𝑦 = 1 − 1 − 𝑦 A



33

𝐹D 𝑦 = 𝑃 min 𝑌', ⋯ , 𝑌A ≤ 𝑦 = 1 − 1 − 𝑦 A .	

𝑓D(𝑦) =
E
EF

 𝐹D 𝑦 = 𝑚 1 − 𝑦 AG'.	

𝔼 𝑌 = V
H

'
𝑦	𝑚 1 − 𝑦 AG'd𝑦= V

H

'
𝑦	𝑓D(𝑦)	d𝑦 =

1
𝑚 + 1



Detour – Min of I.I.D. Uniforms

34

Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = V
H

?
𝑃 𝑌 ≥ 𝑦 d𝑦

Proof   

:
'()(*(+

= ;
'

+
;
)

+
𝑓, 𝑥 	d𝑥	d𝑦 = ;

'

+
𝑃 𝑌 ≥ 𝑦 	d𝑦

𝔼 𝑌 = ;
'

+
𝑥 ⋅ 𝑓, 𝑥 	d𝑥 = ;

'

+
;
'

*
1 d𝑦 ⋅ 𝑓, 𝑥 	d𝑥 = ;

'

+
;
'

*
𝑓, 𝑥 	d𝑦	d𝑥



Detour – Min of I.I.D. Uniforms

35

𝑌", ⋯ , 𝑌-~	Unif 0,1  (i.i.d.) 

𝑌 = min 𝑌", ⋯ , 𝑌-

Useful fact. For any random variable 𝑌 taking 
non-negative values

𝔼 𝑌 = V
H

?
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = 1
/

0
𝑃 𝑌 ≥ 𝑦 d𝑦 = 1

/

)
1 − 𝑦 1d𝑦

= 8−
1

𝑚 + 1
1 − 𝑦 12)

/

)

= 0 − −
1

𝑚 + 1	
=

1
𝑚 + 1



Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

𝔼[min 𝑌', ⋯ , 𝑌B ] =
'

BC'
= '

I

𝔼[min 𝑌' ] =
'

'C'
= '

)

𝔼[min 𝑌', 𝑌) ] =
'

)C'
= '

J

In general,  𝔼[min 𝑌', ⋯ , 𝑌A ] = '
AC'

If 𝑌', ⋯ , 𝑌A~	Unif 0,1  (iid) where do we expect the points to end up?
 



Back to counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
𝑁	 = # of IDs in the stream = 11,    𝑚	 = # of distinct IDs in the stream = 5  



Distinct Elements – Hashing into [𝟎, 𝟏]

38

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

32,       12,       14,      32,      7,       12,       32,        7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)    



Distinct Elements – Hashing into [𝟎, 𝟏]

39

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

32,       12,       14,      32,      7,       12,       32,        7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)    

M=4 distinct elements 
→ 4 i.i.d. RVs ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 	~	Unif 0,1

→ 𝔼 min ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 = '
BC'

= '
I



Distinct Elements – Hashing into [𝟎, 𝟏]

42

𝑥), 𝑥-, … , 𝑥.  contains 𝑚 distinct elements

𝔼 min ℎ(𝑥'), … , ℎ(𝑥K) =
1

𝑚 + 1

Hash function ℎ: 𝑈 → [0,1] 
Assumption: For all 𝑥 ∈ 𝑈,  ℎ 𝑥 	~	Unif 0,1  and mutually independent

ℎ(𝑥)), ℎ 𝑥- , … , ℎ(𝑥.) contains 𝑚 i.i.d. rvs ~	Unif 0,1  
and 𝑁 −𝑚 repeats



A super duper clever idea!!!!

43

So 𝑚 = '
𝔼 MNO P(Q4),…,P(Q5)

− 1

𝔼 min ℎ(𝑥'), … , ℎ(𝑥K) =
1

𝑚 + 1

What if min ℎ(𝑥)), … , ℎ(𝑥.)  is ≈ 𝔼 min ℎ(𝑥)), … , ℎ(𝑥.)  ?



The MinHash Algorithm – Idea

1. Compute val = min{ℎ(𝑥)), … , ℎ(𝑥.)}
2. Assume that val ≈ 𝔼 min ℎ(𝑥)), … , ℎ(𝑥.)

3. Output as estimate for 𝑚: 	 round )
345
− 1

44

𝑚 =
1

𝔼 min ℎ(𝑥'), … , ℎ(𝑥K)
− 1



The MinHash Algorithm – Implementation

45

Memory cost = just remember val 
(with sufficient precision)

Algorithm MinHash(𝑥), 𝑥-, … , 𝑥.)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥6)}

return round )
345
− 1



MinHash Example

Stream:    13,      25,       19,     25,       19,      19

Hashes: 0.51,  0.26,  0.79,  0.26,  0.79,  0.79

 
What does 
MinHash return?

1. Compute val = min{ℎ(𝑥&), … , ℎ(𝑥')}
2. Assume that val ≈ 𝔼 min ℎ(𝑥&), … , ℎ(𝑥')

3. Output round &
()*
− 1



MinHash Example II

Stream:    11,     34,     89,     11,      89,     23

Hashes:  0.5,  0.21,  0.94,   0.5,  0.94,   0.1

Output is )
/.)
− 1 = 9 Clearly, not a very good answer!

Not unlikely: 𝑃 ℎ 𝑥 < 0.1 = 0.1 



The MinHash Algorithm – Problem

48

Algorithm MinHash(𝑥), 𝑥-, … , 𝑥.)
val ← ∞
for 𝑖 = 1 to 𝑁 do

 val ← min{val, ℎ(𝑥6)}

return round )
345
− 1

val = min{ℎ(𝑥!), … , ℎ(𝑥+)}

Problem: val is not 𝔼[val]!     
How far is val from 𝔼[val]? 

𝔼[val] =
1

𝑚 + 1

Var(val) ≈
1

𝑚 + 1 )



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use 𝑘 independent hash functions ℎ', ℎ), ⋯ ℎ]  

val" = min{ℎ"(𝑥"), … , ℎ"(𝑥E)}
valF = min{ℎF(𝑥"), … , ℎF(𝑥E)}

                …
valG = min{ℎH(𝑥"), … , ℎH(𝑥E)}

val ←
1
𝑘
Q
IJ"

H

valK

Output as es.mate

 for 𝑚: 	 round
1
val

− 1



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use 𝑘 independent hash functions ℎ', ℎ), ⋯ ℎ]  

Algorithm MinHash(𝑥', 𝑥), … , 𝑥K)
val', … , val^ ← ∞
for 𝑖 = 1 to 𝑁 do
        for 𝑗 = 1 to 𝑘 do    val_ ← min{val_ , ℎ_(𝑥*)}

val ←
1
𝑘
8
*+'

]

valN

return round '
`ab
− 1

Var val =
1
𝑘

1
𝑚 + 1 -


