CSE 312
Foundations of Computing II
22: Wrap up MLE; Counting Distinct Elements

Agenda

- Recap MLE
- Unbiased and Consistent Estimators
- Distinct Elements Application

Estimation

\(\left.$$
\begin{array}{l}\text { Distribution } \\
P(x ; \theta) \\
\hline\end{array}
$$ \longrightarrow \begin{array}{l}Independent

samples

X_{1}, ···, X_{n}

from P(x ; \theta)\end{array}\right) \quad\)| estimate |
| :--- |
| Estimation |
| Algorithm |$\longrightarrow \hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)$

$\theta=\underline{\text { unknown }}$ parameter

Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data $x_{1}, \ldots ., x_{n}$, find $\hat{\theta}$ such that $\mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. \log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Two-parameter optimization

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Normal outcomes x_{1}, \ldots, x_{n}
Goal: estimate $\theta_{\mu}=$ expectation and $\theta_{\sigma^{2}}=$ variance

$$
\begin{aligned}
& \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\boldsymbol{\sigma}^{2}}\right)=\left(\frac{1}{\sqrt{2 \pi \theta_{\boldsymbol{\sigma}^{2}}}}\right)^{n} \prod_{i=1}^{n} e^{\frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\boldsymbol{\sigma}^{2}}}} \\
& \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta_{\mu}, \theta_{\boldsymbol{\sigma}^{2}}\right)=-n \frac{\ln \left(2 \pi \theta_{\boldsymbol{\sigma}^{2}}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{\mu}\right)^{2}}{2 \theta_{\boldsymbol{\sigma}^{2}}}
\end{aligned}
$$

Likelihood - Continuous Case

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Normal outcomes x_{1}, \ldots, x_{n}

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

MLE estimator for expectation

$$
\hat{\theta}_{\boldsymbol{\sigma}^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}
$$

MLE estimator for variance

Agenda

- Recap MLE
- Unbiased and Consistent Estimators
- Distinct Elements Application

When is an estimator good?

Parameter estimate

Independent
samples
X_{1}, \ldots, X_{n}
from $P(x ; \theta)$

$\theta=\underline{\text { unknown }}$ parameter

Definition. An estimator of parameter θ is an unbiased estimator if

$$
\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta .
$$

Note: This expectation is over the samples X_{1}, \ldots, X_{n}

Three samples from $U(0, \theta)$

Example - Coin Flips

Recall: $\hat{\theta}_{\mu}=\frac{n_{H}}{n}$

Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails
Fact. $\hat{\theta}_{\mu}$ is unbiased
i.e., $\mathbb{E}\left[\hat{\theta}_{\mu}\right]=p$, where p is the probability that the coin turns out head.

Why?
Because $\mathbb{E}\left[n_{H}\right]=n p$ when p is the true probability of heads.

Consistent Estimators \& MLE

$\theta=\underline{u n k n o w n ~ p a r a m e t e r ~}$
Definition. An estimator is unbiased if $\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$ for all $n \geq 1$.

Definition. An estimator is consistent if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$.

Theorem. MLE estimators are consistent.
(But not necessarily unbiased)

Example - Consistency

Normal outcomes X_{1}, \ldots, X_{n} i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance - Biased!
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

Example - Consistency

Normal outcomes X_{1}, \ldots, X_{n} i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance - Biased!
$\widehat{\Theta}_{\sigma^{2}}$ converges to same value as S_{n}^{2}, i.e., σ^{2}, as $n \rightarrow \infty$.
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

So what do we want?

- When statisticians are estimating a variance from a sample, they usually divide by $n-1$ instead of n.
- They and we not only want good estimators (unbiased, consistent)
- They/we also want confidence bounds
- Upper bounds on the probability that these estimators are far the truth about the underlying distributions
- Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the only way or best way to get them (unless the variance is known)

Agenda

- Recap MLE
- Unbiased and Consistent Estimators
- Distinct Elements Application

Data mining - Stream Model

- In many data mining situations, data often not known ahead of time.
- Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model - Problem Setup

Input: sequence (aka. "stream") of N elements $x_{1}, x_{2}, \ldots, x_{N}$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data \Rightarrow use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
Application
You are the content manager at YouTube, and you are trying to figure out the distinct view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 distinct view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
- Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
- Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=$ \# of IDs in the stream = 11, $\quad m=\#$ of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: m is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=$ \# of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

$m=2$

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

$m=2$
$m=4$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up?
In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

What is some intuition for this?

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}\left[\min \left\{Y_{1}, \cdots, Y_{m}\right\}\right]$?

CDF: Observe that $\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y$ if and only if $Y_{1} \geq y, \ldots, Y_{m} \geq y$

$$
\begin{aligned}
P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y\right) & =P\left(Y_{1} \geq y, \ldots, Y_{m} \geq y\right) \\
y \in[0,1] & =P\left(Y_{1} \geq y\right) \cdots P\left(Y_{m} \geq y\right) \quad \text { (Independence) } \\
& =(1-y)^{m} \\
& \Rightarrow P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \leq y\right)=1-(1-y)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& F_{Y}(y)=P\left(\min \left\{Y_{1}, \cdots, Y_{m}\right\} \leq y\right)=1-(1-y)^{m} . \\
& f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=m(1-y)^{m-1} . \\
& \mathbb{E}[Y]=\int_{0}^{1} y f_{Y}(y) \mathrm{d} y=\int_{0}^{1} y m(1-y)^{m-1} \mathrm{~d} y=\frac{1}{m+1}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

Proof

$$
\begin{array}{r}
\mathbb{E}[Y]=\int_{0}^{\infty} x \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty}\left(\int_{0}^{x} 1 \mathrm{~d} y\right) \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty} \int_{0}^{x} f_{Y}(x) \mathrm{d} y \mathrm{~d} x \\
=\int_{0}^{\infty} \int_{y}^{\infty} f_{Y}(x) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
\end{array}
$$

Detour - Min of I.I.D. Uniforms

$$
\begin{aligned}
& Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1) \text { (i.i.d.) } \\
& Y=\min \left\{Y_{1}, \cdots, Y_{m}\right\}
\end{aligned}
$$

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

$$
\begin{aligned}
\mathbb{E}[Y] & =\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y=\int_{0}^{1}(1-y)^{m} \mathrm{~d} y \\
& =-\left.\frac{1}{m+1}(1-y)^{m+1}\right|_{0} ^{1}=0-\left(-\frac{1}{m+1}\right)=\frac{1}{m+1}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up?
In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

$$
\begin{array}{lll}
m=1 & \frac{\mathbb{E}\left[\min \left(Y_{1}\right)\right]=\frac{1}{1+1}=\frac{1}{2}}{\times} \\
m=2 & 0_{\mathbb{E}\left[\min \left(Y_{1}, Y_{2}\right)\right]=\frac{1}{2+1}=\frac{1}{3}}^{1} \\
m=4 & 0 \times \frac{x}{\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{4}\right)\right]=\frac{1}{4+1}=\frac{1}{5}}
\end{array}
$$

Back to counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=\#$ of IDs in the stream = 11, $m=\#$ of distinct IDs in the stream = 5
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Distinct Elements - Hashing into [0, 1]
Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{aligned}
& \text { 32, 12, 14, 32, 7, 12, 32, } 7 \\
& 11111111 \\
& h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)
\end{aligned}
$$

Distinct Elements - Hashing into [0, 1]
Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$M=4$ distinct elements

$$
\begin{aligned}
& \rightarrow 4 \text { i.i.d. RVs } \quad h(32), h(12), h(14), h(7) \sim \operatorname{Unif}(0,1) \\
& \quad \rightarrow \mathbb{E}[\min \{h(32), h(12), h(14), h(7)\}]=\frac{1}{4+1}=\frac{1}{5}
\end{aligned}
$$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$x_{1}, x_{2}, \ldots, x_{N}$ contains m distinct elements

\downarrow
$h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{N}\right)$ contains m i.i.d. rvs $\sim \operatorname{Unif}(0,1)$

$$
\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]=\frac{1}{m+1}
$$

A super duper clever idea!!!!

$$
\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]=\frac{1}{m+1}
$$

$$
\text { So } m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1
$$

What if $\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$ is $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right] ?$

The MinHash Algorithm - Idea $\quad m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1$

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output as estimate for m : round $\left(\frac{1}{\mathrm{val}}-1\right)$

The MinHash Algorithm - Implementation

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
val $\leftarrow \infty$
for $i=1$ to N do Memory cost $=$ just remember val
val $\leftarrow \min \left\{v a l, h\left(x_{i}\right)\right\}$
return round $\left(\frac{1}{\text { val }}-1\right)$

MinHash Example

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output round $\left(\frac{1}{\text { val }}-1\right)$

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does
 MinHash return?

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is $\frac{1}{0.1}-1=9$
Clearly, not a very good answer!

Not unlikely: $P(h(x)<0.1)=0.1$

The MinHash Algorithm - Problem

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$$
\mathrm{val} \leftarrow \infty
$$

for $i=1$ to N do
val $\leftarrow \min \left\{\right.$ val, $\left.h\left(x_{i}\right)\right\}$
return round $\left(\frac{1}{\text { val }}-1\right)$

$$
\operatorname{val}=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\} \quad \mathbb{E}[\text { val }]=\frac{1}{m+1}
$$

Problem: val is not $\mathbb{E}[$ val]! How far is val from $\mathbb{E}[$ val $]$?

$$
\operatorname{Var}(\operatorname{val}) \approx \frac{1}{(m+1)^{2}}
$$

How can we reduce the variance?

Idea: Repetition to reduce variance!

 Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$$$
\begin{array}{r}
\operatorname{val}_{1}=\min \left\{h^{1}\left(x_{1}\right), \ldots, h^{1}\left(x_{N}\right)\right\} \\
\operatorname{val}_{2}=\min \left\{h^{2}\left(x_{1}\right), \ldots, h^{2}\left(x_{N}\right)\right\} \\
\operatorname{val}_{\mathrm{k}}=\min \left\{h^{k}\left(x_{1}\right), \ldots, h^{k}\left(x_{N}\right)\right\} \\
\operatorname{val} \leftarrow \frac{1}{k} \sum_{i=1}^{k} \operatorname{val}_{\mathrm{i}}
\end{array}
$$

Output as estimate

$$
\text { for } m: \quad \text { round }\left(\frac{1}{\mathrm{val}}-1\right)
$$

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$
Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$\operatorname{val}_{1}, \ldots, \operatorname{val}_{\mathrm{k}} \leftarrow \infty$
for $i=1$ to N do
for $j=1$ to k do $\quad \operatorname{val}_{j} \leftarrow \min \left\{\operatorname{val}_{j}, h^{j}\left(x_{i}\right)\right\}$
$\mathrm{val} \leftarrow \frac{1}{k} \sum_{i=1}^{k} \mathrm{val}_{\mathrm{i}}$
return round $\left(\frac{1}{\text { val }}-1\right)$

$$
\operatorname{Var}(\mathrm{val})=\frac{1}{k} \frac{1}{(m+1)^{2}}
$$

