
CSE 312

Foundations of Computing II
Lecture 23: Finish distinct elements; Markov Chains +
application

1

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you
are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

• IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a
certain term/item
– Advertising, marketing trends, etc.

Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
!	 = # of IDs in the stream = 11, $	 = # of distinct IDs in the stream = 5

Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

$ = 1

$ = 2

$ = 4
![min &!, ⋯ , &"] = !

"#! =
!
$

![min &!] = !
!#! =

!
%

![min &!, &%] = !
%#! =

!
&

In general, ![min &!, ⋯ , &'] = !
'#!

If &!, ⋯ , &'~	Unif 0,1 (iid) where do we expect the points to end up?

Tim

Back to counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
!	 = # of IDs in the stream = 11, $	 = # of distinct IDs in the stream = 5

I x o N I

ha 5

Distinct Elements – Hashing into [", $]

13

Hash function ℎ: 3 → [0,1]
Assumption: For all 5 ∈ 3, ℎ 5 	~	Unif 0,1 and mutually independent

32, 12, 14, 32, 7, 12, 32, 7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

N
948 N

0.38 0.45 0.11 0.38 0.56 0.45

0.38 0.38 0.11 0.11 0.11 0.11

Distinct Elements – Hashing into [", $]

14

Hash function ℎ: 3 → [0,1]
Assumption: For all 5 ∈ 3, ℎ 5 	~	Unif 0,1 and mutually independent

32, 12, 14, 32, 7, 12, 32, 7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

M=4 distinct elements
→ 4 i.i.d. RVs ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 	~	Unif 0,1

→ ! min ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 = !
"#! =

!
$

N lengthystream
m distinctelts

xy xntU i

iopfh

Distinct Elements – Hashing into [", $]

17

&!, &", … , &# contains (distinct elements

! min ℎ(5!), … , ℎ(5() = 1
> + 1

Hash function ℎ: 3 → [0,1]
Assumption: For all 5 ∈ 3, ℎ 5 	~	Unif 0,1 and mutually independent

ℎ(&!), ℎ &" , … , ℎ(&#) contains (i.i.d. rvs ~	Unif 0,1
and @ −> repeats

sad

A super duper clever idea!!!!

18

So > = !
) *+, -(/!),…,-(/")

− 1

! min ℎ(5!), … , ℎ(5() = 1
> + 1

What if min ℎ(&!), … , ℎ(&#) is ≈ 6 min ℎ(&!), … , ℎ(&#) ?

me
MH m

m fin I

The MinHash Algorithm – Idea

1. Compute val = min{ℎ(&!), … , ℎ(&#)}
2. Assume that val ≈ 6 min ℎ(&!), … , ℎ(&#)
3. Output as estimate for (: 	 round !

$%& − 1

19

> = 1
! min ℎ(5!), … , ℎ(5()

− 1

The MinHash Algorithm – Implementation

20

Memory cost = just remember val
(with sufficient precision)

Algorithm MinHash(&!, &", … , &#)
val ← ∞
for E = 1 to F do

 val ← min{val, ℎ(&')}
return round !

$%& − 1

MinHash Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does
MinHash return?

1. Compute val = min{ℎ(+!), … , ℎ(+")}
2. Assume that val ≈ 1 min ℎ(+!), … , ℎ(+")
3. Output round !

#$% − 1O

val 0.26

round 26
1 3

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is !(.! − 1 = 9 Clearly, not a very good answer!

Not unlikely: B ℎ 5 < 0.1 = 0.1

val tracking
min h x Hw

min hex Mxn min Y Ym

The MinHash Algorithm – Problem

23

Algorithm MinHash(&!, &", … , &#)
val ← ∞
for E = 1 to F do

 val ← min{val, ℎ(&')}
return round !

$%& − 1

val = min{ℎ(<!), … , ℎ(<")}

Problem: val is not ![val]!
How far is val from ![val]?

)[val] = 1
A + 1

Var(val) ≈ 1
> + 1 %

of

FIT

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use K independent hash functions ℎ!, ℎ%, ⋯ ℎC

val8 = min{ℎ8(18), … , ℎ8(19)}
val: = min{ℎ:(18), … , ℎ:(19)}

 …
val; = min{ℎ<(18), … , ℎ<(19)}

val ← 1
78=>8

<
val?

Output as es+mate

 for >: 	 round 1
val − 1

x ̅ Ex

E vat E EEvali

t.EE I

Var vat Van Eval vaiE.fi Tmnt

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use K independent hash functions ℎ!, ℎ%, ⋯ ℎC

Algorithm MinHash(5!, 5%, … , 5()
val!, … , valD ← ∞
for Q = 1 to @ do
 for R = 1 to K do valE ← min{valE , ℎE(5F)}

val ← 1
KUFG!

C
val+

return round !
HIJ − 1

Var val = 1
I

1
(+ 1 "

Is

CSE 422

Agenda

• Markov Chains
• Application: PageRank

26

A typical day in my life….

27

time 9 = 0

A typical day in my life

How do we interpret this diagram?

At each time step V
– I can be in one of 3 states
• Work, Surf, Email

– If I am in some state W at time V
• the labels of out-edges of W give the probabilities of my moving

to each of the states at time V + 1 (as well as staying the same)
– so labels on out-edges sum to 1

28

e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at
the next time step, but I will never be in state Surf in the next step.

This kind of
random process
is called a
Markov Chain

This diagram looks vaguely familiar if you took CSE 311 …

29

Markov chains are a special kind of
probabilistic (finite) automaton

The diagrams look a bit like those of
Deterministic Finite Automata (DFAs)
you saw in 311 except that…
• There are no input symbols on the edges

– Think of there being only one kind of input symbol “another tick of the clock”
so no need to mark it on the edge

• They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the
state they are currently in.

Many interesting questions about Markov Chains

30

Given: In state Work at time K = 0

1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2?

3. What is the probability that I am in state ; at some
time 9 far in the future?

Many interesting questions about Markov Chains

31

1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2?

Given: In state Work at time K = 0

Define variable X M to be state I am in at time V

<(= @ = Work)

<(= @ = Surf)

<(= @ = Email)

9 0 1 2
>

?

?

0.4 0.4.0.4 0 6001 0.0.5

0.6

0

An organized way to understand the distribution of K *

34

<(= @ = Work)

<(= @ = Surf)

<(= @ = Email)

9 0 1 2
>

?

?

?. A

?. B

?

= ?. A ⋅ 0.4 + ?. B ⋅ 0.1 = 0.16 + 0.06 = ?. FF	

= ?. A ⋅ 0.6 + ?. B ⋅ 0.6 = 0.24 + 0.36 = ?. B?	

= ?. A ⋅ 0 + ?. B ⋅ 0.3 = 0 + 0.18 = ?. >I	

JA@ =

JB@ =

JC@ =

Write as a tuple (JA@ , JB@ , JC@) a.k.a. a row vector:

[JA@ , JB@ , JC@]Y M =
9

1 0,0
9 04,06,0
9
2

22,06018

Describe evolution of ! ! using the “transition probability matrix

36

< = @D8 = Work	 = @ = Work)MAA =

MAA MAB MAC
MBA MBB MBC
MCA MCB MCC

 =N =
0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

< = @D8 = Email	 = @ = Surf)MBC =

etc

W S E

An organized way to understand the distribution of K *

37

[JA@ , JB@ , JC@] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

[JA@D8 , JB@D8 , JC@D8] =
N

<(= @ = Work)
<(= @ = Surf)
<(= @ = Email)

JA@ =

JB@ =
JC@ =

Vector-matrix
multiplication

Write S @ = [JA@ , JB@ , JC@]
Then for all 9 ≥ 0, S @D8 = S @ N

4

9 95
98g

9 M M 99m
961 9 M 9 M M 90m

An organized way to understand the distribution of K *

41

Write S @ = [JA@ , JB@ , JC@] Then for all 9 ≥ 0, S @D8 = S @ N

So S 8 = S E N
 S : = S 8 N = (S E N)N = S E N:

[JA@ , JB@ , JC@] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

[JA@D8 , JB@D8 , JC@D8] =
N

9 9 9 9

By induction … we can derive

42

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

L * = L (M* for all N ≥ 0

M Pr in state E at met instate S athome0

Many interesting questions about Markov Chains

45

1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2?

3. What is the probability that I am in state ; at some
time 9 far in the future?

Given: In state Work at time K = 0

L * = L (M* for all N ≥ 0

What does Y M 	look like for really big V ?

M* as N grows

46

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

Y M = Y S ZM for all V ≥ 0

N: NF

N8E

M* as N grows

47

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

Y M = Y S ZM for all V ≥ 0

N: NF

N8E NFE

NGE
What does this
say about L * ?

M* as N grows

48

Y TS = Y S ZTS

= [JAGE , JBGE , JCGE][JAE , JBE , JCE] ⋅

• In the long run, the starting state doesn’t really matter!!
• So in a long stretch of time, chance I’m surfing the web is:

TEN

0.44

• Suppose that we believe that the distribution on states
converges to some fixed probability vector P= (Q+ , Q, , Q-)

• Can we figure out what P	vis just by looking at M?

49

9 IT

9 IT
94 1 94 M

IT TM

Observation

If L(*/!) = L(*) then it will never change again!

Called a stationary distribution and has a special name
	 P = (Q+ , Q, , Q-)

Solution to P	 = 	 P	M
50

Solving for Stationary Distribution

51

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

 = (^U , ^V, ^W)
UA ⋅ 0.4 +	 UB⋅ 0.1 +	 UC⋅ 0.5 = UA
UA ⋅ 0.6 +	 UB⋅ 0.6 +	 UC⋅ 0 =	 UB
UA ⋅ 0	 +	 UB⋅ 0.3 +	 UC⋅ 0.5 =	 UC

(^U , ^V, ^W)

UA 	+ 	 UB+	 UC 	=1
Tw

Ts

TE

Computing the Stationary Distribution

52

[^U, ^V, ^X] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [^U, ^V, ^W]

Stationary Distribution satisfies
• _	 = 	 _Z, where _ = (^U , ^V, ^W)
• ^U + ^V + ^W = 1

è ^U = !S
&" , 	 ^V=

!$
&" , 	 ^W=

Y
&"

Solve system of equations:

0.4 ⋅ ^U + 0.1 ⋅ ^V + 0.5 ⋅ ^W = ^U
0.6 ⋅ ^U + 0.6 ⋅ ^V 	 = ^V

0.3 ⋅ ^V + 0.5 ⋅ ^W =	^W
^U +	 ^V +	 ^W = 1

Solving for Stationary Distribution

53

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

 = (^U , ^V, ^W)

 As V → ∞, 	 Y(M) → _ no matter what distribution Y S 	is !!

UA ⋅ 0.4 +	 UB⋅ 0.1 +	 UC⋅ 0.5 = UA
UA ⋅ 0.6 +	 UB⋅ 0.6 +	 UC⋅ 0 =	 UB
UA ⋅ 0	 +	 UB⋅ 0.3 +	 UC⋅ 0.5 =	 UC

(^U , ^V, ^W)

UA 	+ 	 UB+	 UC 	=1

è ^U = !S
&" , 	 ^V=

!$
&" , 	 ^W=

Y
&"

Markov Chains recap

• A set of R states {1, 2, 3, … 	R}
• The state at time N is denoted by K(*)
• A square transition matrix M, dimension R×	R	

M"# = V K */! = W 	K(*)	 = E)
• M*

"# = Pr (in state W	after	N steps| start in state E).
• Nice Markov chains are not sensitive to initial distribution of

states. M* → Y, where all rows in Y	are the same
probability vector P

• A stationary distribution P is the solution to:
P	 = 	 P	M, normalized so that Σ'∈[4]Q" = 1

55

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

NGE

The Fundamental Theorem of Markov Chains

Theorem. Any nice* Markov chain
has a unique stationary distribution P.

Moreover, as N → ∞, for	all	E, W, 	 lim
*→7

	M'8
* = Q8

56

*aperiodic and irreducible: these concepts are beyond us but they turn out to cover a very large
class of Markov chains of practical importance.

Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a “random walk” on this graph.

57

1 2

3 5

4

Agenda

• Markov Chains
• Application: PageRank

58

PageRank: Some History

The year was 1997
– Bill Clinton in the White House
– Deep Blue beat world chess champion (Kasparov)

The Internet was not like it was today. Finding stuff was hard!
– In Nov 1997, only one of the top 4 search engines actually found

itself when you searched for it

59

The Problem

Search engines worked by matching words in your queries to
documents.

Not bad in theory, but in practice there are lots of documents
that match a query.
– Search for ‘Bill Clinton’, top result is ‘Bill Clinton Joke of the Day’
– Susceptible to spammers and advertisers

60

The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent
textual match).

• Then rank the results based on some measure of ‘quality’ or
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)
– Larry Page and Sergey Brin (Ph.D. students at Stanford)

61

Both groups had the same brilliant idea

Larry Page and Sergey Brin (Ph.D. students at Stanford)
– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)
– MacArthur genius prize, Nevanlinna Prize and many other

academic honors

62

PageRank - Idea

Take into account the directed graph
structure of the web.
Use hyperlink analysis to compute what
pages are high quality or have high
authority.
Trust the Internet itself to define what is
useful via its links.

63

PageRank - Idea

Idea 1 : Think of each link as a citation
 “vote of quality”

Rank pages by in-degree?

64

PageRank - Idea

Idea 1 : Think of each link as a citation
 “vote of quality”

Rank pages by in-degree?

Problems:
• Spamming
• Not all links created equal
• Some linkers are not discriminating

65

PageRank - Idea

Idea 2 : Perhaps we should weight the
links somehow and then use the
weights of the in-links to rank pages

66

Inching towards PageRank

1. Web page has high quality if it’s linked
to by lots of high quality pages

2. A page is high quality if it links to lots
of high quality pages

That’s a recursive definition!

67

Inching towards PageRank

• If web page & has [outgoing links,
one of which goes to \, this
contributes 1/[to the importance of
\

• But 1/[of what?
We want to take into account the
importance of & too…

 …so it actually contributes 1/[of the
 importance of & 68

69

This gives the following equations

Idea: Use the transition matrix M	defined by a random walk
 on the web to compute quality of webpages.

Namely: Find L such that LM = L

70

Seem familiar?

This gives the following equations

Idea: Use the transition matrix M	defined by a random walk
 on the web to compute quality of webpages.

Namely: Find L such that LM = L

This is the stationary distribution for the Markov chain
defined by a random web surfer
– Starts at some node (webpage) and randomly follows a link to

another.
– Use stationary distribution of her surfing patterns after a long

time as notion of quality
71

Seem familiar?

Issues with PageRank

• How to handle dangling nodes (dead ends that don’t link to
anything) ?

• How to handle Rank sinks – group of pages that only link to
each other ?

Both solutions can be solved by “teleportation”

72

Final PageRank Algorithm

1. Make a Markov Chain with one state for each webpage on the Internet with
the transition probabilities !!" = #

$%&'()(!).
2. Use a modified random walk. At each point in time if the surfer is at some

webpage #:
– If 9 has outlinks:

• With probability :, take a step to one of the neighbors of 9 (equally likely)
• With probability 1 − :, “teleport” to a uniformly random page in the whole

Internet.
– Otherwise, always “teleport”

3. Compute stationary distribution $ of this perturbed Markov chain.
4. Define the PageRank of a webpage # as the stationary probability %!.
5. Find all pages with decent textual match to search and then order those

pages by PageRank!

73

PageRank - Example

74

It Gets More Complicated

While this basic algorithm was the defining idea that launched
Google on their path to success, this is far from the end to
optimizing search

Nowadays, Google and other web search engines have a LOT
more secret sauce to rank pages, most of which they don’t
reveal 1) for competitive advantage and 2) to avoid gaming of
their algorithms.

75

