
CSE 312

Foundations of Computing II
Lecture 23: Finish distinct elements; Markov Chains + 
application
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Today: Counting distinct elements

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4

Application

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

• IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain 
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a 
certain term/item
– Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
!	 = # of IDs in the stream = 11,    $	 = # of distinct IDs in the stream = 5  
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Back to counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32,   12,   14,   32,   7,   12,   32,    7,    32,    12,   4
!	 = # of IDs in the stream = 11,    $	 = # of distinct IDs in the stream = 5  
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Distinct Elements – Hashing into [", $]

13

Hash function ℎ: 3 → [0,1] 
Assumption: For all 5 ∈ 3,  ℎ 5 	~	Unif 0,1  and mutually independent

32,       12,       14,      32,      7,       12,       32,        7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)    

N
948 N

0.38 0.45 0.11 0.38 0.56 0.45

0.38 0.38 0.11 0.11 0.11 0.11



Distinct Elements – Hashing into [", $]

14

Hash function ℎ: 3 → [0,1] 
Assumption: For all 5 ∈ 3,  ℎ 5 	~	Unif 0,1  and mutually independent

32,       12,       14,      32,      7,       12,       32,        7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)    

M=4 distinct elements 
→ 4 i.i.d. RVs ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 	~	Unif 0,1

→ ! min ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 = !
"#! =

!
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Distinct Elements – Hashing into [", $]
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&!, &", … , &#  contains ( distinct elements

! min ℎ(5!), … , ℎ(5() = 1
> + 1

Hash function ℎ: 3 → [0,1] 
Assumption: For all 5 ∈ 3,  ℎ 5 	~	Unif 0,1  and mutually independent

ℎ(&!), ℎ &" , … , ℎ(&#) contains ( i.i.d. rvs ~	Unif 0,1  
and @ −> repeats

sad



A super duper clever idea!!!!
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So > = !
) *+, -(/!),…,-(/")

− 1

! min ℎ(5!), … , ℎ(5() = 1
> + 1

What if min ℎ(&!), … , ℎ(&#)  is ≈ 6 min ℎ(&!), … , ℎ(&#)  ?
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The MinHash Algorithm – Idea

1. Compute val = min{ℎ(&!), … , ℎ(&#)}
2. Assume that val ≈ 6 min ℎ(&!), … , ℎ(&#)
3. Output as estimate for (: 	 round !

$%& − 1

19

> = 1
! min ℎ(5!), … , ℎ(5()

− 1



The MinHash Algorithm – Implementation
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Memory cost = just remember val 
(with sufficient precision)

Algorithm MinHash(&!, &", … , &#)
val ← ∞
for E = 1 to F do

 val ← min{val, ℎ(&')}
return round !

$%& − 1



MinHash Example

Stream:    13,      25,       19,     25,       19,      19

Hashes: 0.51,  0.26,  0.79,  0.26,  0.79,  0.79

 
What does 
MinHash return?

1. Compute val = min{ℎ(+!), … , ℎ(+")}
2. Assume that val ≈ 1 min ℎ(+!), … , ℎ(+")
3. Output round !

#$% − 1O

val 0.26

round 26
1 3



MinHash Example II

Stream:    11,     34,     89,     11,      89,     23

Hashes:  0.5,  0.21,  0.94,   0.5,  0.94,   0.1

Output is !(.! − 1 = 9 Clearly, not a very good answer!

Not unlikely: B ℎ 5 < 0.1 = 0.1 

val tracking
min h x Hw

min hex Mxn min Y Ym



The MinHash Algorithm – Problem
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Algorithm MinHash(&!, &", … , &#)
val ← ∞
for E = 1 to F do

 val ← min{val, ℎ(&')}
return round !

$%& − 1

val = min{ℎ(<!), … , ℎ(<")}

Problem: val is not ![val]!     
How far is val from ![val]? 

)[val] = 1
A + 1

Var(val) ≈ 1
> + 1 %

of
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How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use K independent hash functions ℎ!, ℎ%, ⋯ ℎC  

val8 = min{ℎ8(18), … , ℎ8(19)}
val: = min{ℎ:(18), … , ℎ:(19)}

                …
val; = min{ℎ<(18), … , ℎ<(19)}

val ← 1
78=>8

<
val?

Output as es+mate

 for >: 	 round 1
val − 1

x ̅ Ex

E vat E EEvali

t.EE I

Var vat Van Eval vaiE.fi Tmnt



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use K independent hash functions ℎ!, ℎ%, ⋯ ℎC  

Algorithm MinHash(5!, 5%, … , 5()
val!, … , valD ← ∞
for Q = 1 to @ do
        for R = 1 to K do    valE ← min{valE , ℎE(5F)}

val ← 1
KUFG!

C
val+

return round !
HIJ − 1

Var val = 1
I

1
( + 1 "

Is
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Agenda

• Markov Chains
• Application: PageRank
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A typical day in my life….

27

time 9 = 0 



A typical day in my life

How do we interpret this diagram?

At each time step V
– I can be in one of 3 states
•  Work, Surf, Email

– If I am in some state W at time V 
• the labels of out-edges of W give the probabilities of my moving 

to each of the states at time V + 1 (as well as staying the same)
–   so labels on out-edges sum to 1

28

e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at 
the next time step, but I will never be in state Surf in the next step.

This kind of 
random process 
is called a 
Markov Chain



This diagram looks vaguely familiar if you took CSE 311 …

29

Markov chains are a special kind of 
probabilistic (finite) automaton

The diagrams look a bit like those of 
Deterministic Finite Automata (DFAs) 
you saw in 311 except that…
• There are no input symbols on the edges

– Think of there being only one kind of input symbol “another tick of the clock”      
so no need to mark it on the edge

• They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the 
state they are currently in.



Many interesting questions about Markov Chains

30

Given:  In state Work at time K = 0

1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2?

3. What is the probability that I am in state ; at some 
time 9 far in the future?



Many interesting questions about Markov Chains
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1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2? 

Given:  In state Work at time K = 0

Define variable X M  to be state I am in at time V

<(= @ = Work)

<(= @ = Surf)

<(= @ = Email)

9 0 1 2
>

?

?

0.4 0.4.0.4 0 6001 0.0.5

0.6

0



An organized way to understand the distribution of K *

34

<(= @ = Work)

<(= @ = Surf)

<(= @ = Email)

9 0 1 2
>

?

?

?. A

?. B

?

= ?. A ⋅ 0.4 + ?. B ⋅ 0.1 = 0.16 + 0.06 = ?. FF	

= ?. A ⋅ 0.6 + ?. B ⋅ 0.6 = 0.24 + 0.36 = ?. B?	

= ?. A ⋅ 0 + ?. B ⋅ 0.3 = 0 + 0.18 = ?. >I	

JA@ =

JB@ =

JC@ =

Write as a tuple (JA@ , JB@ , JC@ ) a.k.a. a row vector:

[JA@ , JB@ , JC@ ]Y M =
9

1 0,0
9 04,06,0
9
2

22,06018



Describe evolution of  ! !  using the “transition probability matrix 

36

< = @D8 = Work	 = @ = Work)MAA =

MAA MAB MAC
MBA MBB MBC
MCA MCB MCC

 =N =
0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

< = @D8 = Email	 = @ = Surf)MBC =

etc

W S E



An organized way to understand the distribution of K *
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[JA@ , JB@ , JC@ ] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

[JA@D8 , JB@D8 , JC@D8 ] =
N

<(= @ = Work)
<(= @ = Surf)
<(= @ = Email)

JA@ =

JB@ =
JC@ =

Vector-matrix 
multiplication

Write S @ = [JA@ , JB@ , JC@ ]
Then for all 9 ≥ 0,  S @D8 = S @ N 

4

9 95
98g

9 M M 99m
961 9 M 9 M M 90m



An organized way to understand the distribution of K *

41

Write S @ = [JA@ , JB@ , JC@ ] Then for all 9 ≥ 0,  S @D8 = S @ N 

So S 8 = S E N
      S : = S 8 N = (S E N)N = S E N:

[JA@ , JB@ , JC@ ] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

[JA@D8 , JB@D8 , JC@D8 ] =
N

9 9 9 9



By induction … we can derive
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

L * = L ( M*  for all N ≥ 0 

M Pr in state E at met instate S athome0



Many interesting questions about Markov Chains
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1. What is the probability that I am in state ; at time 1?

2. What is the probability that I am in state ; at time 2?

3. What is the probability that I am in state ; at some 
time 9 far in the future?

Given:  In state Work at time K = 0

L * = L ( M*  for all N ≥ 0 

What does Y M 	look like for really big V ? 



M*  as N grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

Y M = Y S ZM  for all V ≥ 0 

N: NF

N8E



M*  as N grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

N

Y M = Y S ZM  for all V ≥ 0 

N: NF

N8E NFE

NGE
What does this 
say about L * ?



M*  as N grows

48

Y TS = Y S ZTS

= [JAGE , JBGE , JCGE ][JAE , JBE , JCE ] ⋅

• In the long run, the starting state doesn’t really matter!!
• So in a long stretch of time, chance I’m surfing the web is:

TEN

0.44



• Suppose that we believe that the distribution on states 
converges to some fixed probability vector P= (Q+ , Q, , Q-)

• Can we figure out what P	vis just by looking at M?

49

9 IT

9 IT
94 1 94 M
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Observation

If L(*/!) = L(*) then it will never change again!

Called a stationary distribution and has a special name 
	 P = (Q+ , Q, , Q-)

Solution to P	 = 	 P	M
50



Solving for Stationary Distribution

51

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

 = (^U , ^V, ^W) 
UA ⋅ 0.4 +	 UB⋅ 0.1 +	 UC⋅ 0.5 = UA
UA ⋅ 0.6 +	 UB⋅ 0.6 +	 UC⋅ 0     =	 UB
UA ⋅ 0	 +	 UB⋅ 0.3 +	 UC⋅ 0.5  =	 UC

(^U , ^V, ^W)

UA 	+ 	 UB+	 UC 	=1
Tw

Ts

TE



Computing the Stationary Distribution

52

[^U, ^V, ^X] 0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [^U, ^V, ^W]

Stationary Distribution satisfies
•  _	 = 	 _Z, where  _ = (^U , ^V, ^W)
•  ^U + ^V + ^W = 1

è ^U = !S
&" , 	 ^V=

!$
&" , 	 ^W=

Y
&"

Solve system of equations:

0.4 ⋅ ^U + 0.1 ⋅ ^V + 0.5 ⋅ ^W = ^U
0.6 ⋅ ^U + 0.6 ⋅ ^V 	 = ^V

0.3 ⋅ ^V + 0.5 ⋅ ^W =	^W
^U +	 ^V +	 ^W = 1



Solving for Stationary Distribution

53

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

 = (^U , ^V, ^W) 

    As V → ∞, 	 Y(M) → _   no matter what distribution Y S 	is !!

UA ⋅ 0.4 +	 UB⋅ 0.1 +	 UC⋅ 0.5 = UA
UA ⋅ 0.6 +	 UB⋅ 0.6 +	 UC⋅ 0     =	 UB
UA ⋅ 0	 +	 UB⋅ 0.3 +	 UC⋅ 0.5  =	 UC

(^U , ^V, ^W)

UA 	+ 	 UB+	 UC 	=1

è ^U = !S
&" , 	 ^V=

!$
&" , 	 ^W=

Y
&"



Markov Chains recap

• A set of R states {1, 2, 3, … 	R}
• The state at time N is denoted by K(*)
• A square transition matrix M, dimension R×	R	

M"# = V K */! = W 	K(*)	 = E)
• M*

"# =  Pr (in state W	after	N steps| start in state E).
• Nice Markov chains are not sensitive to initial distribution of 

states. M*  → Y, where all rows in Y	are the same 
probability vector P

• A stationary distribution P is the solution to:
P	 = 	 P	M,  normalized so that Σ'∈[4]Q" = 1

55

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

NGE



The Fundamental Theorem of Markov Chains 

Theorem. Any nice* Markov chain 
has a unique stationary distribution P.

Moreover, as N → ∞, for	all	E, W, 	 lim
*→7

	M'8
* = Q8

56

*aperiodic and irreducible: these concepts are beyond us but they turn out to cover a very large 
class of Markov chains of practical importance.



Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a “random walk” on this graph.

57

1 2

3 5

4



Agenda

• Markov Chains
• Application: PageRank
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PageRank: Some History

The year was 1997
– Bill Clinton in the White House
– Deep Blue beat world chess champion (Kasparov)

The Internet was not like it was today. Finding stuff was hard!
– In Nov 1997, only one of the top 4 search engines actually found 

itself when you searched for it

59



The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.
– Search for ‘Bill Clinton’, top result is ‘Bill Clinton Joke of the Day’
– Susceptible to spammers and advertisers

60



The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent 
textual match). 

• Then rank the results based on some measure of ‘quality’ or 
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)
– Larry Page and Sergey Brin (Ph.D. students at Stanford)

61



Both groups had the same brilliant idea 

Larry Page and Sergey Brin (Ph.D. students at Stanford)
– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)
– MacArthur genius prize, Nevanlinna Prize and many other 

academic honors

62



PageRank - Idea

Take into account the directed graph 
structure of the web.  
Use hyperlink analysis to compute what 
pages are high quality or have high 
authority.                                                                      
Trust the Internet itself to define what is 
useful via its links.

63



PageRank - Idea

Idea 1 : Think of each link as a citation   
   “vote of quality”

Rank pages by in-degree? 

64



PageRank - Idea

Idea 1 : Think of each link as a citation   
   “vote of quality”

Rank pages by in-degree? 

Problems:
• Spamming
• Not all links created equal
• Some linkers are not discriminating

65



PageRank - Idea

Idea 2 : Perhaps we should weight the              
links somehow and then use the         
weights of the in-links to rank pages

66



Inching towards PageRank

1. Web page has high quality if it’s linked 
to by lots of high quality pages

2. A page is high quality if it links to lots 
of high quality pages

That’s a recursive definition!

67



Inching towards PageRank

• If web page & has [ outgoing links, 
one of which goes to \, this 
contributes 1/[ to the importance of 
\

• But 1/[ of what? 
We want to take into account the 
importance of & too…                                      

    …so it actually contributes 1/[ of the 
    importance of & 68
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This gives the following equations

Idea: Use the transition matrix M	defined by a random walk 
     on the web to compute quality of webpages. 

Namely:  Find L such that  LM = L

70

Seem familiar?



This gives the following equations

Idea: Use the transition matrix M	defined by a random walk 
     on the web to compute quality of webpages. 

Namely:  Find L such that  LM = L

This is the stationary distribution for the Markov chain 
defined by a random web surfer
– Starts at some node (webpage) and randomly follows a link to 

another.
– Use stationary distribution of her surfing patterns after a long 

time as notion of quality
71

Seem familiar?



Issues with PageRank

• How to handle dangling nodes (dead ends that don’t link to 
anything) ? 

• How to handle Rank sinks – group of pages that only link to 
each other ?

Both solutions can be solved by “teleportation”

72



Final PageRank Algorithm

1. Make a Markov Chain with one state for each webpage on the Internet with 
the transition probabilities !!" = #

$%&'()(!).
2. Use a modified random walk. At each point in time if the surfer is at some 

webpage #:  
– If 9 has outlinks:

• With probability :, take a step to one of the neighbors of 9 (equally likely) 
• With probability 1 − :, “teleport” to a uniformly random page in the whole 

Internet.
– Otherwise, always “teleport”

3. Compute stationary distribution $ of this perturbed Markov chain. 
4. Define the PageRank of a webpage # as the stationary probability %!. 
5. Find all pages with decent textual match to search and then order those 

pages by PageRank!

73



PageRank - Example

74



It Gets More Complicated

While this basic algorithm was the defining idea that launched 
Google on their path to success, this is far from the end to 
optimizing search

Nowadays, Google and other web search engines have a LOT 
more secret sauce to rank pages, most of which they don’t 
reveal 1) for competitive advantage and 2) to avoid gaming of 
their algorithms.
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