CSE 312
Foundations of Computing Il

Lecture 23: Finish distinct elements; Markov Chains +
application



Today: Counting distinct elements

32, 12, 14, 32, /7, 12, 32, /, 32, 12,
Application
You are the content manager at YouTube, and you

are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!



Other applications

* |IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

— Anomaly detection, traffic monitoring

* Search: How many distinct search queries on Google on a certain
topic yesterday

* Web services: how many distinct users (cookies) searched/browsed a

certain term/item
— Advertising, marketing trends, etc.



Counting distinct elements

327 12’ 14’ 32’ 7, 12? 32’ 7’ 32’ 12’

N = #of IDs in the stream =11, m = # of distinct IDs in the stream =5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?




Detour — Min of L.I.D. Uniforms o©

If Yy, -, Yo, ~ Unif((Q iic s ve.expect the points to end up?

In genera

1+1
m=1 . 1 1
YE[min(Y;,Y,)] = 5= =
m = 2 X X
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E[min(Ys, -, Ya)] =~ =
m =4 X X X



Back to counting distinct elements

32’ 12’ 14’ 32’ 7, 127 32’ 7, 32’ 127

N =# of IDs in the stream =11, m = # of distinct IDs in the stream =5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

T\J(ﬁ)_‘% @-})”';N"—S
W(x)= /\Z\_(:f\l_
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‘Hash function h: U — [0,1] |
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

2, 12, 14, 32, 7, 12,

T irTirvi

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

M=4 distinct elements

— 4i.id.RVs  h(32),h(12), h(14), h(7) ~ Unif(O 1)
1

s E[min{h(32), h(12), h(14), h(7)}] = — =" y
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Distinct Elements - Hashing into [0, 1]




Distinct Elements - Hashing into [0, 1]

____________________________________________________________________________________________________________________________________________________________________

Hash function h: U — [0,1] e
‘Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent '

X1,%X5, ..., Xy contains m distinct elements

!

h(x,),h(x,), ..., h(xy) contains m i.i.d. rvs ~ Unif(0,1)
l and N — m repeats

E[min{h(x;), ..., h(xy)}] = m+1



A super duper clever idea!!!!

E[min{h(xq), ..., h(xy)}] = m+1

1
mln{h(xl) ()}

\

{ — A_S_\__\

M= W — N

Som =

What if min{h(x,), ..., h(xy)}is = E[min{h(x,), ..., h(xy)}] ? 8
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The MinHash Algorithm - Idea it = E[min{h(xy), ..., h(xy)}] —

1. Compute val = min{h(x,), ..., h(xy)}
2. Assume that val = E|[min{h(x,), ..., h(xy)}]

3. Output as estimate form: round (—1 — 1)

val




The MinHash Algorithm - Implementation

Algorithm MinHash(xq, X5, ..., Xy)

val « oo \
fori = 1to N do Memory cost = just remember val

_ / (with sufficient precision)
val « min{val, h(x;)}

return round (i - 1)
val

20



1 Compute val = min{h(x,), ..., h(xy)}

MinHash Example 2. Assume that vl N
3.  Outputfround (Vial — 1)

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

ol = 0.b

What does YN,\&L___\ ~\ — ?3
MinHash return?



MinHash Example I

Stream: 11, 34, &89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, O.1

.1
Output s i 1=9 Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

min (heye ) x| = "“‘“@\“*>V‘“‘>



The MinHash Algorithm - Problem

Algorithm MinHash(xq, X5, ..., Xy)
val « oo

fori=T1toNdo Problem: val is not [E[val]!

val « min{val, h(x;)} How far is val from E[val]?

1
- Var(val) =

(m + 1)2

—

S(QOQ>/'\; i‘m- (

val = min{h(x;), ..., h(xy)} E[val] = mi— 1

23
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How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h', h?, -+ h*

val; = min{h!(x,), ..., A’ (xp)}
val, = min{h?(x,), ..., h*(xp)}

— 1 3
T = ARG e A G E(\@:) B E( f\k& >

el s W

Output as est'imate1 ’\WT\-"\
for m: round(——l) (
Val —_ T
— A=)
Nor() Vin [ 4 Yy s Sy B o
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How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h', h?, -+ h*

Algorithm MinHash(xq, x5, ..., Xy)

valy, ..., valg « o
fori =1toN do

forj = 1tokdo Valj — min{valj,hj(xi)}

k
1
val « P 2 val;
= 1 ) Var(val) =

return round (— —1
val

1
E(m + 1)4
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Agenda

* Markov Chains @
* Application: PageRank
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A typical day in my life....

|
.6
timet =0 4 @
oo
NPy <ok
D
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A typical day in my life

How do we interpret this diagram? This kind of

random process
is called a

Markov Chain

At each time step t

— | can be in one of 3 states
* Work, Surf, Email

— If lamin some state s attime ¢

* the labels of out-edges of s give the probabilities of my moving
to each of the states at time ¢t + 1 (as well as staying the same)

— so labels on out-edges sum to 1

e.g. If I am in Email, there is a 50-50 chance | will be in each of Work or Email at

the next time step, but | will never be in state Surf in the next step.
28



This diagram looks vaguely familiar if you took CSE 311...

Markov chains are a special kind of
probabilistic (finite) automaton

The diagrams look a bit like those of
Deterministic Finite Automata (DFAs)
you saw in 311 except that...

* There are no input symbols on the edges

— Think of there being only one kind of input symbol “another tick of the clock”
so no need to mark it on the edge

* They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the
state they are currently in.
29



Many interesting questions about Markov Chains

Given: In state Work attimet = 0

What is the probability that | am in state s at time 12

. What is the probability that | am in state s at time 2?

What is the probability that | am in state s at some
time t far in the future?

30



Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 12

2. What is the probability that | am in state s at time 2?

Define variable X(©) to be state | am in at time ¢

Given: In state Work attimet = 0

t 0 1 2

PXW=work) | 1 |0M | 0404 060l + G- 0.5

P(X® = surf) 0 O.b

P(X® = Email) o | O

31



An organized way to understand the distribution of X (t)

(&) (¢

Write as a tuple (q‘gﬁ), qds” > qg )) a.k.a. arow vector:

d
t t t
q® = [ a5, 5] O;M:: (\) 0, o)
D= (0% 06, ©)
q( — )
9P aayoe,08
0 1 2
gD = Px®=work) | 1 | 0.4 =0.4-04+0.6-0.1=0.16+ 0.06 = 0.22
¢ = P(x® = surf) 0 | 0.6 =0.4-06+0.6-0.6=024+0.36=0.60
g = p(x® =Email) | 0 0 |=04-04+0.6-03=0+0.18=0.18

34




Describe evolution of ¢(®) using the “transition probability matrix

W S E

Pww Pws Pwe wlf04 06 O
MZ[pSW Pss Psel|l= £]0.1 0.6 0.3‘
Pew DPes PEkE ELO5 0 0.5

pww = P(XE*D = work |X® = work)
pse = P(XED = Email [X® = surf)

etc



An organized way to understand the distribution of X (t)

M

(t) ()
1S|/+1)’ §t+1), qét+1)] [ as”, a5 {

04 06 0
[/ - [0.1 0.6 0.3]
z]cm)\—J 01‘?,/" 05 0 0.5

-

' =
o~

’/
-
’/
-
-

Vector-matrix -~
multiplication

write ¢© = [q), a5”, a5 ]
g'? = P(x® = work) Then for all t > 0, ]q(t“) = q(t)M/\

g =P(X® = surf)

q,g =P(X(t) = Email) Q:l(i): (0) M




An organized way to understand the distribution of X (t)

M
(t+1) _(t+1) _(t+1)q _ [q&?,qgt),qg)] 04 06 O
w 45 s ] [0.1 0.6 0.3]

05 0 0.5

Write q©) = [qﬁ}), qgt), q,gt)] Thenforallt > 0, q*Y = qOM

41



By induction ... we can derive

M
04 06 O
[0.1 0.6 0.3]
05 0 05

gV = q QM forallt >0

+ instalc S of e O
MsE: Q((M%E"*M{‘) ] %>
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Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 12
2. What is the probability that | am in state s at time 2?

3. What is the probability that | am in state s at some
time t far in the future?

Given: In state Work attimet = 0

g’ = g O Mt forallt > 0

What does q‘*) look like for really big t 2
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g = q@Mt forallt >0

M! as t grows

2 3
M M w s g M w s E

04 06 O W /22 6 .18 W (.238 .492 .270
0.1 0.6 0.3 S (.2:") 42 .33) S | 307 .402 .291

05 0 0.5 E \45 3 .25 F \.335 .450 .215

MlO
1% S E
1% ( 2940 .4413 .26~18)

S | .2942 4411 .2648
E \.2942 .4413 .2648

46



M! as t grows

M 1
04 06 0 W (.22
01 0.6 03 il
05 0 0.5 E \.45
10 30
M™ W s B M W s
W (2940 .4413 .2648 W [.29411764705 .44117647059
s | 29042 4411 2648 s | 29411764706 .44117647058
E \.29042 4413 .2648 E \.29411764706 .44117647059
M*®° W S
W [.294117647058823 .441176470588235
S | 294117647068823 .441176470588235
E \.204117647068823 = .441176470588235

g = q@Mtforallt >0

3
S E M 1 S E
6 .18 W (.238 .492 .270
42 .33 S ( S07 .402 291 )
3 .25 E \.335 .450 .215

E

26470588235
26470588235

.26470-588235) What does tt

- say about g

264705882352941

264705882352941
264705882352941
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M! as t grows

q(6® = g(© p60

W S E
() _(0) _(0) 294117647058823 .441176470588235 .2 82352
[qW Qs s Qg 1- (- Ql]lihli(h‘x .3 H]]iffl_/.():'{tf .i: 6“”:-8 2352941 = ‘E]?O), §60)’ ql(?60)]
294117647068823 .441176470588235 .264705882352941
;2941 lT(i"lT()(iHH‘.ZiS A41176470: )82%7}§ :26470588235294 %

* Inthelong run, the starting state doesn’t really matter!!

* Soin along stretch of time, chance I’'m surfing the webis:  O©.4Y%.. . "



* Suppose that we believe that the distribution on states
converges to some fixed probability vector = (1, 5, 1)

* Can we figure out what m vis just by looking at M?
@) .

i
@r\xﬁ (—[—)
11() —_— ﬂ o "

o\

1 T =M



Observation

If g+ = gV then it will never change again!

Called a stationary distribution and has a special name

T = (T[W' Itg, T[E)

Solutiontomr = ™M

50



Solving for Stationary Distribution

my, e, wg) (04 0.6 0
e (O-l 0.6 0.3 )= (my,ns, Tg) My - 0.6 + m5- 0.6 + mp- 0 = 75

Ty + 7T5+ g =1

51



Computing the Stationary Distribution

[T[W) Iig, T[E] l04 0.6

0 — [T[W; Iig, T[E]
0.1 0.6 0.3
0.5 0 0.5

Solve system of equations:

Stationary Distribution satisfies
e T M, where 1 = (T, g, TT5)
* Ty +tngt+mny=1

(04 -1y +0.1 -1+ 05 -1 =my
1 0.6 -1y, +0.6 - 715 = Tl
! 0.3 -5+ 0.5 g =mg
e Ty + s + g =1

52



Solving for Stationary Distribution

Ty - 04+ ms- 0.1+ mg- 0.5 =my,

Ty, T, Tg) 04 06 O
e <01 0.6 0.3 |=(my,ms, ) My - 0.6+ 75 0.6 + mg- 0 = 7

0.5 0 0.5 Ty -0 + mg 0.3+ mp- 0.5 = mg

Tty + 7T5+ g =1l

Ast — o, g - m no matter what distribution g(*’ is !!
53



Markov Chains recap

A set of n states {1, 2, 3, ... n}

The state at time t is denoted by X (©)

* A square transition matrix M, dimension nX n

(t+1) . (t) . 04 06 O
My = P(XD = j| X =) (01 06 03

Mtl-j = Pr(in state j after ¢ steps| start in state i).

Nice Markov chains are not sensitive to initial distribution of
states. M* — W, where all rows in W are the same

probability vector
* A stationary distribution 7 is the solution to:

—_— 0 _ _ Me0 w S E
w =T M; normallzed SO that ZlE[Tl] T[i — 1 W [ .204117647058823 .441176470588235 .264705882352041
S | 204117647068823 .441176470588235 264705882352041

E \.294117647068823 .441176470588235 .264705882352941



The Fundamental Theorem of Markov Chains

_____________________________________________________________________________________________________________________________________________________________________

Theorem. Any nice* Markov chain
“has a unique stationary distribution .

Moreover,ast — o, foralli,j, lim M;; = m;

t— o0

t
Lj

“aperiodic and irreducible: these concepts are beyond us but they turn out to cover a very large
class of Markov chains of practical importance.

56



Another Example: Random Walks

Suppose we start at node 1, and at each step 1 2
transition to a neighboring node with equal

probability. ‘

This is called a “random walk’ on this graph. a °

57



Agenda

e Markov Chains
* Application: PageRank @
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PageRank: Some History

The year was 1997
— Bill Clinton in the White House
— Deep Blue beat world chess champion (Kasparov)

The Internet was not like it was today. Finding stuff was hard!

— In Nov 1997, only one of the top 4 search engines actually found
itself when you searched for it

59



The Problem

Search engines worked by matching words in your queries to
documents.

Not bad in theory, but in practice there are lots of documents
that match a query.

— Search for ‘Bill Clinton’; top result is ‘Bill Clinton Joke of the Day’
— Susceptible to spammers and advertisers

60



The Fix: Ranking Results

* Start by doing filtering to relevant documents (with decent
textual match).

* Then rank the results based on some measure of ‘quality’ or
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
— Jon Kleinberg (professor at Cornell)
— Larry Page and Sergey Brin (Ph.D. students at Stanford)

61



Both groups had the same brilliant idea

Larry Page and Sergey Brin (Ph.D. students at Stanford)
— Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)

— MacArthur genius prize, Nevanlinna Prize and many other
academic honors

62



PageRank - Idea

Take into account the directed graph
structure of the web.

Use hyperlink analysis to compute what
pages are high quality or have high
authority.

Trust the Internet itself to define what is
useful via its links.

63



PageRank - Idea

Idea 1: Think of each link as a citation
“vote of quality”

Rank pages by in-degree?

64



PageRank - Idea

Idea 1: Think of each link as a citation
“vote of quality”

Rank pages by in-degree?

Problems:

* Spamming

* Not all links created equal

* Some linkers are not discriminating

65



PageRank - Idea

Idea 2 : Perhaps we should weight the
links somehow and then use the
weights of the in-links to rank pages

66



Google

Inching towards PageRank
PageRank

1. Web page has high quality if it’s linked
to by lots of high quality pages

2. A pageis high quality if it links to lots
of high quality pages

That’s a recursive definition!

67



Google

Inching towards PageRank
PageRank

* If web page x has d outgoing links,
one of which goes to y, this
contributes 1/d to the importance of

y

 But 1/d of what?
We want to take into account the
importance of x too...

... S0 it actually contributes 1/d of the

importance of x %






This gives the following equations

Idea: Use the transition matrix M defined by a random walk
on the web to compute quality of webpages. X n

Namely: Find q suchthat gM = q Seem familiar? %

70



This gives the following equations

Idea: Use the transition matrix M defined by a random walk
on the web to compute quality of webpages. X n

Namely: Find q suchthat gM = q Seem familiar? @

This is the stationary distribution for the Markov chain
defined by a random web surfer

— Starts at some node (webpage) and randomly follows a link to
another.

— Use stationary distribution of her surfing patterns after a long

time as notion of quality
71



Issues with PageRank

* How to handle dangling nodes (dead ends that don’t link to
anything) 2

* How to handle Rank sinks — group of pages that only link to
each other?

Both solutions can be solved by “teleportation”

72



Final PageRank Algorithm

Vop W

Make a Markov Chain with one state for each webpage on the Internet with

the transition probabilities M;; = m

Use a modified random walk. At each point in time if the surfer is at some
webpage i:
— If i has outlinks:

* With probability p, take a step to one of the neighbors of i (equally likely)

* With probability 1 — p, “teleport” to a uniformly random page in the whole
Internet.

— Otherwise, always “teleport”
Compute stationary distribution 7t of this perturbed Markov chain.
Define the PageRank of a webpage i as the stationary probability ;.

Find all pages with decent textual match to search and then order those
pages by PageRank!

/3



PageRank - Example




It Gets More Complicated

While this basic algorithm was the defining idea that launched
Google on their path to success, this is far from the end to

optimizing search

Nowadays, Google and other web search engines have a LOT
more secret sauce to rank pages, most of which they don’t
reveal 1) for competitive advantage and 2) to avoid gaming of
their algorithms.
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