CSE 312
 Foundations of Computing II

Lecture 3: More counting!

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Recap (1)

Product Rule: In a sequential process, there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), \ldots, and
- n_{m} choices for the $m^{\text {th }}$ step (given the previous choices), then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{m}$

Application. \# of k-element sequences of distinct symbols (a.k.a. k-permutations) from n-element set is

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!}
$$

Recap (2)

Combination: If order does not matter, then count the number of ordered objects, and then divide by the number of orderings

Applications. The number of subsets of size k of a set of size n is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Binomial coefficient (verbalized as " n choose k ")

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle
- Combinatorial Proofs

Quick Review of Cards

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

Counting Cards I

- A straight is five consecutive rank cards of any suit. How many possible straights?
- choose lowest rank
- choose snits fo

$$
10 \cdot 4^{5}
$$

A2 345,678910 JGKA

Counting Cards II

- 52 total cards
- 13 different ranks: $2,3,4,5,6,7,8,9,10, J, Q, K, A$

A flush is a five card hand all of the same suit. How many possible flushes?

- Suit
- any 5 of that sur

$$
4 \cdot\binom{13}{5}
$$

Counting Cards III

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

How many flushes are NOT straights?

$$
\begin{aligned}
& \text { \# flusks }- \text { \#straght fusbos. } \\
& 4 .\binom{13}{5}-10.4
\end{aligned}
$$

Counting Cards III

- 52 total cards
- 13 different ranks: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

- How many flushes are NOT straights?

$$
\begin{aligned}
& =\text { \#flush }- \text { \#flush and straight } \\
& \left(4 \cdot\binom{13}{5}=5148\right)-10 \cdot 4
\end{aligned}
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\begin{gathered}
\binom{4}{3} \cdot\binom{49}{2} \\
\uparrow
\end{gathered}
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot\binom{49}{2}
$$

Poll:
A. Correct
B. Overcount
C. Undercount
https://pollev.com/ annakarlin185

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow} \boldsymbol{\operatorname { o v e r } \text { counting }}$

EXAMPLE: How many ways are there to choose afeard hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

excess: 3. \# hards if 4 Aces)

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow} \boldsymbol{\operatorname { o v e r } \text { counting }}$

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

When in doubt, break up into disjoint sets you know how to count, and then use the sum rule.

$$
\text { hands of } 3 \text { Aop }\binom{4}{3}\binom{48}{2}
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow} \boldsymbol{\operatorname { o v e r } \text { counting }}$

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule

$$
\begin{aligned}
& ,-\binom{4}{3} \cdot\binom{48}{2} \\
& \cdots\binom{48}{1}
\end{aligned}
$$

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle
- Combinatorial Proofs

Example: Kids and Candies

How many ways can we give five indistinguishable candies to these three kids?

Kids + Candies

Kids + Candies

- First try: first choose how many candies kid 1 gets, then how many kid 2 gets, etc.

Kids + Candies
 Cl $\stackrel{C 2}{c}$ 4_{4}^{5}

- Second try: lay down the 5 candies in a row. First choose which kid gets candy 1, then which kid gets candy 2 , and so on.
- How many times is the outcome where kid 1 gets all 5 candies counted?
- How many times is the outcome where kid 1 gets 4 and kid 2 gets 1 counted?

Kids + Candies

Idea: Count something equivalent
5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

Idea: Count something equivalent
5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

For each candy distribution, there is exactly one corresponding way to arrange the stars and bars.

Conversely, for each arrangement of stars and bars, there is exactly one candy distribution it represents.

Kids + Candies

How many ways to construct a sequence with 5 stars and 2 bars?

Kids + Candies

Hence, the number of ways to distribute candies to the 3 kids is the number of arrangements of stars and bars.

This is

$$
\binom{7}{2}=\binom{7}{5}
$$

Stars and Bars / Divider method

The number of ways to distribute n indistinguishable balls into k distinguishable bins is

$$
\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

* $\left.4\right|_{b-1} ^{4}$

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle

- Combinatorial Proofs

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle - More generally

If there are n pigeons in $n-1$ holes, then one hole must contain at least 2 pigeons!

Pigeonhole Principle - More generally

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.
Then, there are $<k \frac{n}{k}=\bar{n}$ pigeons overall.
Contradiction!

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $\lceil x\rceil$ is x rounded up to the nearest integer (e.g., $[2.731\rceil=3$)
- Floor: $\lfloor x\rfloor$ is x rounded down to the nearest integer (e.g., $[2.731\rfloor=2$)

Pigeonhole Principle - Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

1. 367 pigeons $=$ people
2. 366 holes = possible birthdays (because of leap year)
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps:

1. Identify pigeons
2. Identify pigeonholes
3. Specify a rule for assigning pigeons to pigeonholes
4. Apply PHP

Pigeonhole Principle - Example (Surprising?)
In every set S of 100 integers, there are at least three elements whose (pairwise) difference is a multiple of 37.

$$
7,10523,-54,10^{150}, \ldots
$$

$$
i-j \equiv 0 \bmod 37
$$

When solving a PHP problem:
When solving a PHP problem:
. Identify pigeons integers in S
2. Identify pigeonholes 3 md 37 , I wed $37, \ldots 36$ med 37
3. $\begin{aligned} & \text { Specify how pigeons are } \\ & \text { assigned to pigeonholes } i \in S\end{aligned} \longrightarrow i$ med 37
4. Apply PHP

$$
\begin{aligned}
& \begin{array}{l}
100 \rightarrow 3_{\text {Phys }}^{37} \\
\rho y \\
\text { Prep } 4 \text { at beat }
\end{array}\left\lceil\frac{100}{37}\right]=3 \underset{38}{\# \text { 's }} \\
& i, j, k \\
& i \operatorname{mad} 37=j \text { nad } 37=k \text { md } 37
\end{aligned}
$$

$i-j \equiv 0$ and 37

Agenda

- Stars and Bars
- More Examples + Sleuth's Criterion
- Pigeonhole Principle
- Combinatorial Proofs

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k} \quad$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ Pascal's Identity
Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial theorem

Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later } \ldots \\
& =\frac{n}{k!(n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad
\end{aligned}
$$

Let's see a combinatorial argument

Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$

$$
S=A \cup B, \text { disjoint }
$$

S : the set of size k subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$
A : the set of size k subsets of $[n]$ including n
B : the set of size k subsets of $[n]$ NOT including n

Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$

$S:$ the set of size k subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$ e.g.: $n=4,, k=2, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : the set of size k subsets of $[n]$ including n

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\} . \quad n=4, k=2
$$

B : the set of size k subsets of $[n]$ NOT including n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\} . \quad n=4, k=2
$$

Example - Binomial Identity $[n]=\{1,2, \cdots, n\}$
$\left.\begin{array}{rc}\left.\text { Fact. } \begin{array}{rl}n \\ k\end{array}\right)=\binom{n-1}{k-1}+\binom{n-1}{k} \\ \mid \\ |S| & |A| \\ |B|\end{array}\right) S=A \cup B$
$S:$ the set of size k subsets of $[n]=\{1,2, \cdots, n\} \quad \rightarrow \quad|S|=\binom{n}{k}$
A : the set of size k subsets of [n including n
B : the set of size k subsets of $[n]$ NOT including n $\{\underbrace{(1,2,3}, \cdots, n-2, n-1) \frac{n}{\pi}\}$

Example - Binomial Identity

$S=A \cup B$

S : the set of size k subsets of $[n]=\{1,2, \cdots, n\}$
A : the set of size k subsets of $[n]$ including n
n is in set, need to choose $k-1$ elements from $[n-1]$

$$
|A|=\binom{n-1}{k-1}
$$

n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

combinatorial argument/proof

- Elegant
- Simple
- Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Algebraic argument

- Brute force
- Less Intuitive

